2,504 research outputs found

    Monochromatic cycle partitions in random graphs

    Get PDF
    Erd\H{o}s, Gy\'arf\'as and Pyber showed that every rr-edge-coloured complete graph KnK_n can be covered by 25r2logr25 r^2 \log r vertex-disjoint monochromatic cycles (independent of nn). Here, we extend their result to the setting of binomial random graphs. That is, we show that if p=p(n)=Ω(n1/(2r))p = p(n) = \Omega(n^{-1/(2r)}), then with high probability any rr-edge-coloured G(n,p)G(n,p) can be covered by at most 1000r4logr1000 r^4 \log r vertex-disjoint monochromatic cycles. This answers a question of Kor\'andi, Mousset, Nenadov, \v{S}kori\'{c} and Sudakov.Comment: 16 pages, accepted in Combinatorics, Probability and Computin

    On the structure of complete graphs without alternating cycles

    Get PDF
    AbstractThe structure of edge-coloured complete graphs Kp which do not contain cycles with adjacent lines differently coloured is completely characterized. This characterization further enables us to prove that evey such Kp (p⩾2) has exactly one connected monochromatic spanning subgraph. Moreover, assume that edges in Kp are coloured by k colours so that no vertex is on more than Δ edges of each colour and less than δ edges of each colour. If such a Kp exists then p⩽Δ+1 and p⩾kδ+1, whereas, any one of these inequalities will ensure the existence of such a Kp

    Covering graphs by monochromatic trees and Helly-type results for hypergraphs

    Full text link
    How many monochromatic paths, cycles or general trees does one need to cover all vertices of a given rr-edge-coloured graph GG? These problems were introduced in the 1960s and were intensively studied by various researchers over the last 50 years. In this paper, we establish a connection between this problem and the following natural Helly-type question in hypergraphs. Roughly speaking, this question asks for the maximum number of vertices needed to cover all the edges of a hypergraph HH if it is known that any collection of a few edges of HH has a small cover. We obtain quite accurate bounds for the hypergraph problem and use them to give some unexpected answers to several questions about covering graphs by monochromatic trees raised and studied by Bal and DeBiasio, Kohayakawa, Mota and Schacht, Lang and Lo, and Gir\~ao, Letzter and Sahasrabudhe.Comment: 20 pages including references plus 2 pages of an Appendi

    Note on alternating directed cycles

    Get PDF
    The problem of the existence of an alternating simple dicycle in a 2-arc-coloured digraph is considered. This is a generalization of the alternating cycle problem in 2-edge-coloured graphs and the even dicycle problem (both are polynomial time solvable). We prove that the alternating dicycle problem is NP -complete. Let f(n)(g(n), resp.) be the minimum integer such that if every monochromatic indegree and outdegree in a strongly connected 2-arc-coloured digraph (any 2-arc-coloured digraph, resp.) D is at least f(n)(g(n), resp.), then D has an alternating simple dicycle. We show that f(n) = #(log n) and g(n) = #(log n). ? 1998 Elsevier Science B.V. All rights reserved Keywords: Alternating cycles; Even cycles; Edge-coloured directed graph 1. Introduction, terminology and notation We shall assume that the reader is familiar with the standard terminology on graphs and digraphs and refer the reader to [4]. We consider digraphs without loops and multiple arcs. The arcs of digraphs are colo..

    Local colourings and monochromatic partitions in complete bipartite graphs

    Full text link
    We show that for any 22-local colouring of the edges of the balanced complete bipartite graph Kn,nK_{n,n}, its vertices can be covered with at most~33 disjoint monochromatic paths. And, we can cover almost all vertices of any complete or balanced complete bipartite rr-locally coloured graph with O(r2)O(r^2) disjoint monochromatic cycles.\\ We also determine the 22-local bipartite Ramsey number of a path almost exactly: Every 22-local colouring of the edges of Kn,nK_{n,n} contains a monochromatic path on nn vertices.Comment: 18 page

    Minimum degree conditions for monochromatic cycle partitioning

    Get PDF
    A classical result of Erd\H{o}s, Gy\'arf\'as and Pyber states that any rr-edge-coloured complete graph has a partition into O(r2logr)O(r^2 \log r) monochromatic cycles. Here we determine the minimum degree threshold for this property. More precisely, we show that there exists a constant cc such that any rr-edge-coloured graph on nn vertices with minimum degree at least n/2+crlognn/2 + c \cdot r \log n has a partition into O(r2)O(r^2) monochromatic cycles. We also provide constructions showing that the minimum degree condition and the number of cycles are essentially tight.Comment: 22 pages (26 including appendix

    Monochromatic cycle partitions in local edge colourings

    Full text link
    An edge colouring of a graph is said to be an rr-local colouring if the edges incident to any vertex are coloured with at most rr colours. Generalising a result of Bessy and Thomass\'e, we prove that the vertex set of any 22-locally coloured complete graph may be partitioned into two disjoint monochromatic cycles of different colours. Moreover, for any natural number rr, we show that the vertex set of any rr-locally coloured complete graph may be partitioned into O(r2logr)O(r^2 \log r) disjoint monochromatic cycles. This generalises a result of Erd\H{o}s, Gy\'arf\'as and Pyber.Comment: 10 page

    Partitioning edge-coloured complete graphs into monochromatic cycles and paths

    Full text link
    A conjecture of Erd\H{o}s, Gy\'arf\'as, and Pyber says that in any edge-colouring of a complete graph with r colours, it is possible to cover all the vertices with r vertex-disjoint monochromatic cycles. So far, this conjecture has been proven only for r = 2. In this paper we show that in fact this conjecture is false for all r > 2. In contrast to this, we show that in any edge-colouring of a complete graph with three colours, it is possible to cover all the vertices with three vertex-disjoint monochromatic paths, proving a particular case of a conjecture due to Gy\'arf\'as. As an intermediate result we show that in any edge-colouring of the complete graph with the colours red and blue, it is possible to cover all the vertices with a red path, and a disjoint blue balanced complete bipartite graph.Comment: 25 pages, 3 figure
    corecore