3,332 research outputs found

    Input variable selection in time-critical knowledge integration applications: A review, analysis, and recommendation paper

    Get PDF
    This is the post-print version of the final paper published in Advanced Engineering Informatics. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2013 Elsevier B.V.The purpose of this research is twofold: first, to undertake a thorough appraisal of existing Input Variable Selection (IVS) methods within the context of time-critical and computation resource-limited dimensionality reduction problems; second, to demonstrate improvements to, and the application of, a recently proposed time-critical sensitivity analysis method called EventTracker to an environment science industrial use-case, i.e., sub-surface drilling. Producing time-critical accurate knowledge about the state of a system (effect) under computational and data acquisition (cause) constraints is a major challenge, especially if the knowledge required is critical to the system operation where the safety of operators or integrity of costly equipment is at stake. Understanding and interpreting, a chain of interrelated events, predicted or unpredicted, that may or may not result in a specific state of the system, is the core challenge of this research. The main objective is then to identify which set of input data signals has a significant impact on the set of system state information (i.e. output). Through a cause-effect analysis technique, the proposed technique supports the filtering of unsolicited data that can otherwise clog up the communication and computational capabilities of a standard supervisory control and data acquisition system. The paper analyzes the performance of input variable selection techniques from a series of perspectives. It then expands the categorization and assessment of sensitivity analysis methods in a structured framework that takes into account the relationship between inputs and outputs, the nature of their time series, and the computational effort required. The outcome of this analysis is that established methods have a limited suitability for use by time-critical variable selection applications. By way of a geological drilling monitoring scenario, the suitability of the proposed EventTracker Sensitivity Analysis method for use in high volume and time critical input variable selection problems is demonstrated.E

    Optimal inspection strategy planning for geometric tolerance verification

    Get PDF
    "Two features characterize a good inspection system: it is accurate, and compared to the manufacturing cost, it is not expensive. Unfortunately, few measuring systems posses both these characteristics, i.e. low uncertainty comes with a cost. But also high uncertainty comes with a cost, because measuring systems with high uncertainty tend to generate more inspection errors, which come with a cost. In the case of geometric inspection, the geometric deviation is evaluated from a cloud of points sampled on a part. Therefore, not only the measuring device has to be selected, but also the sampling strategy has to be planned, i.e. the sampling point cloud size and where points should be located on the feature to inspect have to be decided. When the measuring device is already available, as it often happens in geometric measurement, where most instruments are flexible, an unwise strategy planning can be the largest uncertainty contributor. In this work, a model for the evaluation of the overall inspection cost is proposed. The optimization of the model can lead to an optimal inspection strategy in economic sense. However, the model itself is based on uncertainty evaluation, in order to assess the impact of measurement error on inspection cost. Therefore, two methodologies for evaluating the uncertainty will be proposed. These methodologies will be focused on the evaluation of the contribution of the sampling strategy to the uncertainty. Finally, few case studies dealing with the inspection planning for a Coordinate Measuring Machine will be proposed

    Statistical Methods for Semiconductor Manufacturing

    Get PDF
    In this thesis techniques for non-parametric modeling, machine learning, filtering and prediction and run-to-run control for semiconductor manufacturing are described. In particular, algorithms have been developed for two major applications area: - Virtual Metrology (VM) systems; - Predictive Maintenance (PdM) systems. Both technologies have proliferated in the past recent years in the semiconductor industries, called fabs, in order to increment productivity and decrease costs. VM systems aim of predicting quantities on the wafer, the main and basic product of the semiconductor industry, that may be physically measurable or not. These quantities are usually ’costly’ to be measured in economic or temporal terms: the prediction is based on process variables and/or logistic information on the production that, instead, are always available and that can be used for modeling without further costs. PdM systems, on the other hand, aim at predicting when a maintenance action has to be performed. This approach to maintenance management, based like VM on statistical methods and on the availability of process/logistic data, is in contrast with other classical approaches: - Run-to-Failure (R2F), where there are no interventions performed on the machine/process until a new breaking or specification violation happens in the production; - Preventive Maintenance (PvM), where the maintenances are scheduled in advance based on temporal intervals or on production iterations. Both aforementioned approaches are not optimal, because they do not assure that breakings and wasting of wafers will not happen and, in the case of PvM, they may lead to unnecessary maintenances without completely exploiting the lifetime of the machine or of the process. The main goal of this thesis is to prove through several applications and feasibility studies that the use of statistical modeling algorithms and control systems can improve the efficiency, yield and profits of a manufacturing environment like the semiconductor one, where lots of data are recorded and can be employed to build mathematical models. We present several original contributions, both in the form of applications and methods. The introduction of this thesis will be an overview on the semiconductor fabrication process: the most common practices on Advanced Process Control (APC) systems and the major issues for engineers and statisticians working in this area will be presented. Furthermore we will illustrate the methods and mathematical models used in the applications. We will then discuss in details the following applications: - A VM system for the estimation of the thickness deposited on the wafer by the Chemical Vapor Deposition (CVD) process, that exploits Fault Detection and Classification (FDC) data is presented. In this tool a new clustering algorithm based on Information Theory (IT) elements have been proposed. In addition, the Least Angle Regression (LARS) algorithm has been applied for the first time to VM problems. - A new VM module for multi-step (CVD, Etching and Litography) line is proposed, where Multi-Task Learning techniques have been employed. - A new Machine Learning algorithm based on Kernel Methods for the estimation of scalar outputs from time series inputs is illustrated. - Run-to-Run control algorithms that employ both the presence of physical measures and statistical ones (coming from a VM system) is shown; this tool is based on IT elements. - A PdM module based on filtering and prediction techniques (Kalman Filter, Monte Carlo methods) is developed for the prediction of maintenance interventions in the Epitaxy process. - A PdM system based on Elastic Nets for the maintenance predictions in Ion Implantation tool is described. Several of the aforementioned works have been developed in collaborations with major European semiconductor companies in the framework of the European project UE FP7 IMPROVE (Implementing Manufacturing science solutions to increase equiPment pROductiVity and fab pErformance); such collaborations will be specified during the thesis, underlying the practical aspects of the implementation of the proposed technologies in a real industrial environment

    Definition, improvement, and harmonization

    Get PDF
    The research leading to these results has received funding from the European Unions Horizon 2020 research and innovation program, mainly project ZDMP under grant agreement 825631, and Eur3ka, TALON, and RE4DY, EU H2020 projects under grant agreements 101016175, 101070181, and 101058384 accordingly.Zero-Defect Manufacturing (ZDM) is the next evolutionary step in quality management for manufacturing that makes use of Industry 4.0 technologies to support quality in manufacturing. These technologies help reduce the cost of inspection, allowing for more inspection points throughout the manufacturing process, reducing the size of quality feedback loops, and guaranteeing that no defective product is delivered to the customer. There are several ZDM-related initiatives, but still no harmonized terminology. This article describes the methodological approach to provide a common agreement on the ZDM concept and its associated terminology taking place within an open CENCENELEC Workshop. The methodology has the support of ISO standards for terminology work such as ISO 704, ISO 860, and ISO 10241–1/2. This work shows that the terminology for ZDM has a significant overlap with the terminology of quality management, metrology, dependability, statistics, non-destructive inspection, and condition monitoring. The proposed new terms and definitions can be used to further extend ISO’s and IEC’s already available terminologies and support present and future researchers in the field to conduct their research using a common vocabulary.publishersversionpublishe
    • 

    corecore