217 research outputs found

    Weakly Supervised Temporal Convolutional Networks for Fine-grained Surgical Activity Recognition

    Full text link
    Automatic recognition of fine-grained surgical activities, called steps, is a challenging but crucial task for intelligent intra-operative computer assistance. The development of current vision-based activity recognition methods relies heavily on a high volume of manually annotated data. This data is difficult and time-consuming to generate and requires domain-specific knowledge. In this work, we propose to use coarser and easier-to-annotate activity labels, namely phases, as weak supervision to learn step recognition with fewer step annotated videos. We introduce a step-phase dependency loss to exploit the weak supervision signal. We then employ a Single-Stage Temporal Convolutional Network (SS-TCN) with a ResNet-50 backbone, trained in an end-to-end fashion from weakly annotated videos, for temporal activity segmentation and recognition. We extensively evaluate and show the effectiveness of the proposed method on a large video dataset consisting of 40 laparoscopic gastric bypass procedures and the public benchmark CATARACTS containing 50 cataract surgeries

    Kontextsensitivität für den Operationssaal der Zukunft

    Get PDF
    The operating room of the future is a topic of high interest. In this thesis, which is among the first in the recently defined field of Surgical Data Science, three major topics for automated context awareness in the OR of the future will be examined: improved surgical workflow analysis, the newly developed event impact factors, and as application combining these and other concepts the unified surgical display.Der Operationssaal der Zukunft ist ein Forschungsfeld von großer Bedeutung. In dieser Dissertation, die eine der ersten im kürzlich definierten Bereich „Surgical Data Science“ ist, werden drei Themen für die automatisierte Kontextsensitivität im OP der Zukunft untersucht: verbesserte chirurgische Worflowanalyse, die neuentwickelten „Event Impact Factors“ und als Anwendungsfall, der diese Konzepte mit anderen kombiniert, das vereinheitlichte chirurgische Display

    Generation of Artificial Image and Video Data for Medical Deep Learning Applications

    Get PDF
    Neuronale Netze haben in den letzten Jahren erstaunliche Ergebnisse bei der Erkennung von Ereignissen im Bereich der medizinischen Bild- und Videoanalyse erzielt. Dabei stellte sich jedoch immer wieder heraus, dass ein genereller Mangel an Daten besteht. Dieser Mangel bezieht sich nicht nur auf die Anzahl an verfügbaren Datensätzen, sondern auch auf die Anzahl an individuellen Stichproben, das heißt an unabhängigen Bildern und Videos, in bestehenden Datensätzen. Das führt wiederum zu einer schlechteren Erkennungsgenauigkeit von Ereignissen durch das neuronale Netz. Gerade im medizinischen Bereich ist es nicht einfach möglich die Datensätze zu erweitern oder neue Datensätze zu erfassen. Die Gründe hierfür sind vielfältig. Einerseits können rechtliche Belange die Datenveröffentlichung verhindern. Andererseits kann es sein, dass eine Krankheit nur sehr selten Auftritt und sich so keine Gelegenheit bietet die Daten zu erfassen. Ein zusätzliches Problem ist, dass es sich bei den Daten meist um eine sehr spezifische Domäne handelt, wodurch die Daten meist nur von Experten annotiert werden können. Die Annotation ist aber zeitaufwendig und somit teuer. Existierende Datenaugmentierungsmethoden können oft nur sinnvoll auf Bilddaten angewendet werden und erzeugen z.B. bei Videos nicht ausreichend zeitlich unabhängige Daten. Deswegen ist es notwendig, dass neue Methoden entwickelt werden, mit denen im Nachhinein auch Videodatensätze erweitert oder auch synthetische Daten generiert werden können. Im Rahmen dieser Dissertation werden zwei neu entwickelte Methoden vorgestellt und beispielhaft auf drei medizinische Beispiele aus dem Bereich der Chirurgie angewendet. Die erste Methode ist die sogenannte Workflow-Augmentierungsmethode, mit deren Hilfe semantischen Information, z.B. Ereignissen eines chirurgischen Arbeitsablaufs, in einem Video augmentiert werden können. Die Methode ermöglicht zusätzlich auch eine Balancierung zum Beispiel von chirurgischen Phasen oder chirurgischen Instrumenten, die im Videodatensatz vorkommen. Bei der Anwendung der Methode auf die zwei verschiedenen Datensätzen, von Kataraktoperationen und laparoskopischen Cholezystektomieoperationen, konnte die Leistungsfähigkeit der Methode gezeigt werden. Dabei wurde Genauigkeit der Instrumentenerkennung bei der Kataraktoperation durch ein Neuronales Netz während Kataraktoperation um 2,8% auf 93,5% im Vergleich zu etablierten Methoden gesteigert. Bei der chirurgischen Phasenerkennung im Fall bei der Cholezystektomie konnte sogar eine Steigerung der Genauigkeit um 8,7% auf 96,96% im Verglich zu einer früheren Studie erreicht werden. Beide Studien zeigen eindrucksvoll das Potential der Workflow-Augmentierungsmethode. Die zweite vorgestellte Methode basiert auf einem erzeugenden gegnerischen Netzwerk (engl. generative adversarial network (GAN)). Dieser Ansatz ist sehr vielversprechend, wenn nur sehr wenige Daten oder Datensätze vorhanden sind. Dabei werden mit Hilfe eines neuronalen Netzes neue fotorealistische Bilder generiert. Im Rahmen dieser Dissertation wird ein sogenanntes zyklisches erzeugendes gegnerisches Netzwerk (engl. cycle generative adversarial network (CycleGAN)) verwendet. CycleGANs führen meiste eine Bild zu Bild Transformation durch. Zusätzlich ist es möglich weitere Bedingungen an die Transformation zu knüpfen. Das CycleGAN wurde im dritten Beispiel dazu verwendet, ein Passbild von einem Patienten nach einem Kranio-Maxillofazialen chirurgischen Korrektur, mit Hilfe eines präoperativen Porträtfotos und der operativen 3D Planungsmaske, zu schätzen. Dabei konnten realistisch, lebendig aussehende Bilder generiert werden, ohne dass für das Training des GANs medizinische Daten verwendeten wurden. Stattdessen wurden für das Training synthetisch erzeugte Daten verwendet. Abschließend lässt sich sagen, dass die in dieser Arbeit entwickelten Methoden in der Lage sind, den Mangel an Stichproben und Datensätzen teilweise zu überwinden und dadurch eine bessere Erkennungsleistung von neuronalen Netzen erreicht werden konnte. Die entwickelten Methoden können in Zukunft dazu verwendet werden, bessere medizinische Unterstützungssysteme basierende auf künstlicher Intelligenz zu entwerfen, die den Arzt in der klinischen Routine weiter unterstützen, z.B. bei der Diagnose, der Therapie oder bei bildgesteuerten Eingriffen, was zu einer Verringerung der klinischen Arbeitsbelastung und damit zu einer Verbesserung der Patientensicherheit führt

    Kontextsensitivität für den Operationssaal der Zukunft

    Get PDF
    The operating room of the future is a topic of high interest. In this thesis, which is among the first in the recently defined field of Surgical Data Science, three major topics for automated context awareness in the OR of the future will be examined: improved surgical workflow analysis, the newly developed event impact factors, and as application combining these and other concepts the unified surgical display.Der Operationssaal der Zukunft ist ein Forschungsfeld von großer Bedeutung. In dieser Dissertation, die eine der ersten im kürzlich definierten Bereich „Surgical Data Science“ ist, werden drei Themen für die automatisierte Kontextsensitivität im OP der Zukunft untersucht: verbesserte chirurgische Worflowanalyse, die neuentwickelten „Event Impact Factors“ und als Anwendungsfall, der diese Konzepte mit anderen kombiniert, das vereinheitlichte chirurgische Display
    corecore