404 research outputs found

    Response of Inland Lakes to Climate Change across the Tibetan Plateau Investigated Using Landsat and ICESat Data

    Get PDF
    The Tibetan Plateau experienced tremendous climate change during the past four decades. Due to the large size, widely distribution of cryosphere, and diverse landforms, different parts of the plateau may experience different climate and cryosphere changing patterns. The changes of inland lakes within the plateau are important indicators of climate change as these lakes are fed by precipitation, permafrost degradation, and glacier melting that are all sensitive to climate change. To examine the spatial and temporal differences of lake variations across the Tibetan Plateau, Landsat images and ICESat/GLAS altimetry data were used to extract the changes in surface areas of 26 lakes selected from six different sub-regions during the 1970s-2010 and the changes in lake elevations of these lakes during 2003-2009. An automated model to extract lake surface area and elevation from Landsat and ICESat data is developed to improve the efficiency of processing the large amount of satellite data. By applying this model, the spatial and temporal changing patterns of selected 26 inland lakes across the Tibetan Plateau during the past four decades are revealed. The lakes from different parts of the Tibetan Plateau show different changing patterns. The lake expansion firstly started from the Central Tibetan Plateau in the 1980s, then moving northward and northwestward; the Northeastern and Northwestern Tibetan Plateau experienced obvious expansion after the late 1990s, and this expansion is still continuing in the northern part, whereas the rapid lake expansion either slowed down or stopped in the central and southern parts of the plateau. The differences in lake changing pattern are caused by diverse climatic regimes and the pattern of the cryospheric distribution in the Tibetan Plateau. For the southern part of the plateau, the change in precipitation and evaporation seems to be the dominating factor to control the lake changes; however, the cryospheric change caused by temperature increase is the most important factor influencing the lake fluctuations in the northern part. These patterns can provide insight into the mechanism of lakes dynamics in response to climate and cryospheric changes; and be applied to assess the potential impacts of climate change on water resources in the Tibetan Plateau

    Book of Abstracts, ACOP2017 : 2nd Asian Conference on Permafrost

    Get PDF

    Energy and Water Cycles in the Third Pole

    Get PDF
    As the most prominent and complicated terrain on the globe, the Tibetan Plateau (TP) is often called the “Roof of the World”, “Third Pole” or “Asian Water Tower”. The energy and water cycles in the Third Pole have great impacts on the atmospheric circulation, Asian monsoon system and global climate change. On the other hand, the TP and the surrounding higher elevation area are also experiencing evident and rapid environmental changes under the background of global warming. As the headwater area of major rivers in Asia, the TP’s environmental changes—such as glacial retreat, snow melting, lake expanding and permafrost degradation—pose potential long-term threats to water resources of the local and surrounding regions. To promote quantitative understanding of energy and water cycles of the TP, several field campaigns, including GAME/Tibet, CAMP/Tibet and TORP, have been carried out. A large amount of data have been collected to gain a better understanding of the atmospheric boundary layer structure, turbulent heat fluxes and their coupling with atmospheric circulation and hydrological processes. The focus of this reprint is to present recent advances in quantifying land–atmosphere interactions, the water cycle and its components, energy balance components, climate change and hydrological feedbacks by in situ measurements, remote sensing or numerical modelling approaches in the “Third Pole” region

    Remote Sensing of Land Surface Phenology

    Get PDF
    Land surface phenology (LSP) uses remote sensing to monitor seasonal dynamics in vegetated land surfaces and retrieve phenological metrics (transition dates, rate of change, annual integrals, etc.). LSP has developed rapidly in the last few decades. Both regional and global LSP products have been routinely generated and play prominent roles in modeling crop yield, ecological surveillance, identifying invasive species, modeling the terrestrial biosphere, and assessing impacts on urban and natural ecosystems. Recent advances in field and spaceborne sensor technologies, as well as data fusion techniques, have enabled novel LSP retrieval algorithms that refine retrievals at even higher spatiotemporal resolutions, providing new insights into ecosystem dynamics. Meanwhile, rigorous assessment of the uncertainties in LSP retrievals is ongoing, and efforts to reduce these uncertainties represent an active research area. Open source software and hardware are in development, and have greatly facilitated the use of LSP metrics by scientists outside the remote sensing community. This reprint covers the latest developments in sensor technologies, LSP retrieval algorithms and validation strategies, and the use of LSP products in a variety of fields. It aims to summarize the ongoing diverse LSP developments and boost discussions on future research prospects

    Linkages between Atmospheric Circulation, Weather, Climate, Land Cover and Social Dynamics of the Tibetan Plateau

    Get PDF
    The Tibetan Plateau (TP) is an important landmass that plays a significant role in both regional and global climates. In recent decades, the TP has undergone significant changes due to climate and human activities. Since the 1980s anthropogenic activities, such as the stocking of livestock, land cover change, permafrost degradation, urbanization, highway construction, deforestation and desertification, and unsustainable land management practices, have greatly increased over the TP. As a result, grasslands have undergone rapid degradation and have altered the land surface which in turn has altered the exchange of heat and moisture properties between land and the atmosphere. But gaps still exist in our knowledge of land-atmosphere interactions in the TP and their impacts on weather and climate around the TP, making it difficult to understand the complete energy and water cycles over the region. Moreover, human, and ecological systems are interlinked, and the drivers of change include biophysical, economic, political, social, and cultural elements that operate at different temporal and spatial scales. Current studies do not holistically reflect the complex social-ecological dynamics of the Tibetan Plateau. To increase our understanding of this coupled human-natural system, there is a need for an integrated approach to rendering visible the deep interconnections between the biophysical and social systems of the TP. There is a need for an integrative framework to study the impacts of sedentary and individualized production systems on the health and livelihoods of local communities in the context of land degradation and climate change. To do so, there is a need to understand better the spatial variability and landscape patterns in grassland degradation across the TP. Therefore, the main goal of this dissertation is to contribute to our understanding of the changes over the land surface and how these changes impact the plateau\u27s weather, climate, and social dynamics. This dissertation is structured as three interrelated manuscripts, which each explore specific research questions relating to this larger goal. These manuscripts constitute the three primary papers of this dissertation. The first paper documents the significant association of surface energy flux with vegetation cover, as measured by satellite based AVHRR GIMMS3g normalized difference vegetation index (NDVI) data, during the early growing season of May in the western region of the Tibetan Plateau. In addition, a 1°K increase in the temperature at the 500 hPa level was observed. Based on the identified positive effects of vegetation on the temperature associated with decreased NDVI in the western region of the Tibetan Plateau, I propose a positive energy process for land-atmosphere associations. In the second paper, an increase in Landsat-derived NDVI, i.e., a greening, is identified within the TP, especially during 1990 to 2018 and 2000 to 2018 time periods. Larger median growing season NDVI change values were observed for the Southeast Tibet shrublands and meadows and Tibetan Plateau Alpine Shrublands and Meadows grassland regions, in comparison to the other three regions studied. Land degradation is prominent in the lower and intermediate hillslope positions in comparison to the higher relative topographic positions, and change is more pronounced in the eastern Southeast Tibet shrublands and meadows and Tibetan Plateau Alpine Shrublands and Meadows grasslands. Geomorphons were found to be an effective spatial unit for analysis of hillslope change patterns. Through the extensive literature review presented in third paper, this dissertation recommends using critical physical geography (CPG) to study environmental and social issues in the TP. The conceptual model proposed provides a framework for analysis of the dominant controls, feedback, and interactions between natural, human, socioeconomic, and governance activities, allowing researchers to untangle climate change, land degradation, and vulnerability in the Tibetan Plateau. CPG will further help improve our understanding of the exposure of local people to climate and socio-economic and political change and help policy makers devise appropriate strategies to combat future grassland degradation and to improve the lives and strengthen livelihoods of the inhabitants of the TP

    Remotely sensed mid-channel bar dynamics in downstream of the Three Gorges Dam, China

    Get PDF
    The downstream reach of the Three Gorges Dam (TGD) along the Yangtze River (1560 km) hosts numerous mid-channel bars (MCBs). MCBs dynamics are crucial to the river’s hydrological processes and local ecological function. However, a systematic understanding of such dynamics and their linkage to TGD remains largely unknown. Using Landsat-image-extracted MCBs and several spatial-temporal analysis methods, this study presents a comprehensive understanding of MCB dynamics in terms of number, area, and shape, over downstream of TGD during the period 1985−2018. On average, a total of 140 MCBs were detected and grouped into four types representing small ( 2 km2), middle (2 km2 − 7 km2), large (7 km2 − 33 km2) and extra-large size (>33 km2) MCBs, respectively. MCBs number decreased after TGD closure but most of these happened in the lower reach. The area of total MCBs experienced an increasing trend (2.77 km2/yr, p-value 0.01) over the last three decades. The extra-large MCBs gained the largest area increasing rate than the other sizes of MCBs. Small MCBs tended to become relatively round, whereas the others became elongate in shape after TGD operation. Impacts of TGD operation generally diminished in the longitudinal direction from TGD to Hankou and from TGD to Jiujiang for shape and area dynamics, respectively. The quantified longitudinal and temporal dynamics of MCBs across the entire Yangtze River downstream of TGD provides a crucial monitoring basis for continuous investigation of the changing mechanisms affecting the morphology of the Yangtze River system

    Satellite-based estimates of groundwater depletion in the Badain Jaran Desert, China

    Get PDF
    published_or_final_versio

    WATER LEVEL MONITORING ON TIBETAN LAKES BASED ON ICESAT AND ENVISAT DATA SERIES

    Get PDF
    • 

    corecore