681 research outputs found

    Formal Verification of Abstract SystemC Models

    Get PDF
    In this paper we present a formal verification approach for abstract SystemC models. The approach allows checking expressive properties and lifts induction known from bounded model checking to a higher level, to cope with the large state space of abstract SystemC programs. The technique is tightly integrated with our SystemC to C transformation and generation of monitoring logic to form a complete and efficient method. Properties specifying both hardware and software aspects, e.g. pre- and post-conditions as well as temporal relations of transactions and events, can be specified. As shown by experiments modern proof techniques allow verifying important non-trivial behavior. Moreover, our inductive technique gives significant speed-ups in comparison to simple methods

    Formal Verification of Probabilistic SystemC Models with Statistical Model Checking

    Full text link
    Transaction-level modeling with SystemC has been very successful in describing the behavior of embedded systems by providing high-level executable models, in which many of them have inherent probabilistic behaviors, e.g., random data and unreliable components. It thus is crucial to have both quantitative and qualitative analysis of the probabilities of system properties. Such analysis can be conducted by constructing a formal model of the system under verification and using Probabilistic Model Checking (PMC). However, this method is infeasible for large systems, due to the state space explosion. In this article, we demonstrate the successful use of Statistical Model Checking (SMC) to carry out such analysis directly from large SystemC models and allow designers to express a wide range of useful properties. The first contribution of this work is a framework to verify properties expressed in Bounded Linear Temporal Logic (BLTL) for SystemC models with both timed and probabilistic characteristics. Second, the framework allows users to expose a rich set of user-code primitives as atomic propositions in BLTL. Moreover, users can define their own fine-grained time resolution rather than the boundary of clock cycles in the SystemC simulation. The third contribution is an implementation of a statistical model checker. It contains an automatic monitor generation for producing execution traces of the model-under-verification (MUV), the mechanism for automatically instrumenting the MUV, and the interaction with statistical model checking algorithms.Comment: Journal of Software: Evolution and Process. Wiley, 2017. arXiv admin note: substantial text overlap with arXiv:1507.0818

    Dependability Analysis of Control Systems using SystemC and Statistical Model Checking

    Get PDF
    Stochastic Petri nets are commonly used for modeling distributed systems in order to study their performance and dependability. This paper proposes a realization of stochastic Petri nets in SystemC for modeling large embedded control systems. Then statistical model checking is used to analyze the dependability of the constructed model. Our verification framework allows users to express a wide range of useful properties to be verified which is illustrated through a case study

    Optimized Temporal Monitors for SystemC

    Get PDF
    SystemC is a modeling language built as an extension of C++. Its growing popularity and the increasing complexity of designs have motivated research efforts aimed at the verification of SystemC models using assertion-based verification (ABV), where the designer asserts properties that capture the design intent in a formal language such as PSL or SVA. The model then can be verified against the properties using runtime or formal verification techniques. In this paper we focus on automated generation of runtime monitors from temporal properties. Our focus is on minimizing runtime overhead, rather than monitor size or monitor-generation time. We identify four issues in monitor generation: state minimization, alphabet representation, alphabet minimization, and monitor encoding. We conduct extensive experimentation and identify a combination of settings that offers the best performance in terms of runtime overhead

    Fast Power and Energy Efficiency Analysis of FPGA-based Wireless Base-band Processing

    Full text link
    Nowadays, demands for high performance keep on increasing in the wireless communication domain. This leads to a consistent rise of the complexity and designing such systems has become a challenging task. In this context, energy efficiency is considered as a key topic, especially for embedded systems in which design space is often very constrained. In this paper, a fast and accurate power estimation approach for FPGA-based hardware systems is applied to a typical wireless communication system. It aims at providing power estimates of complete systems prior to their implementations. This is made possible by using a dedicated library of high-level models that are representative of hardware IPs. Based on high-level simulations, design space exploration is made a lot faster and easier. The definition of a scenario and the monitoring of IP's time-activities facilitate the comparison of several domain-specific systems. The proposed approach and its benefits are demonstrated through a typical use case in the wireless communication domain.Comment: Presented at HIP3ES, 201

    Dynamic Verification of SystemC with Statistical Model Checking

    Get PDF
    Many embedded and real-time systems have a inherent probabilistic behaviour (sensors data, unreliable hardware,...). In that context, it is crucial to evaluate system properties such as "the probability that a particular hardware fails". Such properties can be evaluated by using probabilistic model checking. However, this technique fails on models representing realistic embedded and real-time systems because of the state space explosion. To overcome this problem, we propose a verification framework based on Statistical Model Checking. Our framework is able to evaluate probabilistic and temporal properties on large systems modelled in SystemC, a standard system-level modelling language. It is fully implemented as an extension of the Plasma-lab statistical model checker. We illustrate our approach on a multi-lift system case study

    Embedded real-time monitoring using SystemC in IMA network

    Full text link
    Avionics is one kind of domain where prevention prevails. Nonetheless fails occur. Sometimes due to pilot misreacting, flooded in information. Sometimes information itself would be better verified than trusted. To avoid some kind of failure, it has been thought to add,in midst of the ARINC664 aircraft data network, a new kind of monitoring

    CONTREX: Design of embedded mixed-criticality CONTRol systems under consideration of EXtra-functional properties

    Get PDF
    The increasing processing power of today’s HW/SW platforms leads to the integration of more and more functions in a single device. Additional design challenges arise when these functions share computing resources and belong to different criticality levels. The paper presents the CONTREX European project and its preliminary results. CONTREX complements current activities in the area of predictable computing platforms and segregation mechanisms with techniques to consider the extra-functional properties, i.e., timing constraints, power, and temperature. CONTREX enables energy efficient and cost aware design through analysis and optimization of these properties with regard to application demands at different criticality levels

    CONTREX: Design of embedded mixed-criticality CONTRol systems under consideration of EXtra-functional properties

    Get PDF
    The increasing processing power of today’s HW/SW platforms leads to the integration of more and more functions in a single device. Additional design challenges arise when these functions share computing resources and belong to different criticality levels. CONTREX complements current activities in the area of predictable computing platforms and segregation mechanisms with techniques to consider the extra-functional properties, i.e., timing constraints, power, and temperature. CONTREX enables energy efficient and cost aware design through analysis and optimization of these properties with regard to application demands at different criticality levels. This article presents an overview of the CONTREX European project, its main innovative technology (extension of a model based design approach, functional and extra-functional analysis with executable models and run-time management) and the final results of three industrial use-cases from different domain (avionics, automotive and telecommunication).The work leading to these results has received funding from the European Community’s Seventh Framework Programme FP7/2007-2011 under grant agreement no. 611146

    A SystemC-based Platform for Assertion-based Verification and Mutation Analysis in Systems Biology

    Get PDF
    Boolean models are gaining an increasing interest for reproducing dynamic behaviours, understanding processes, and predicting emerging properties of cellular signalling networks through in-silico experiments. They are emerging as avalid alternative to the quantitative approaches (i.e., based on ordinary differential equations) for exploratory modelling when little is known about reaction kinetics or equilibrium constants in the context of gene expression or signalling. Even though several approaches and software have been recently proposed for logic modelling of biological systems, they are limited to specific modelling contexts and they lack of automation in analysing biological properties such as complex attractors, molecule vulnerability, dose response. This paper presents a design and verification platform based on SystemC that applies methodologies and tools well established in the electronic-design automation (EDA) fieldsuch as assertion-based verification (ABV) and mutation analysis, which allow complex attractors (i.e., protein oscillations) and robustness/sensitivity of the signalling networks to be simulated and analysed. The paper reports the results obtained by applying such verification techniques for the analysis of the intracellular signalling network controlling integrin activation mediating leukocyte recruitment from the blood into the tissues
    • …
    corecore