646 research outputs found

    Sensing Mountains

    Get PDF
    Sensing mountains by close-range and remote techniques is a challenging task. The 4th edition of the international Innsbruck Summer School of Alpine Research 2022 – Close-range Sensing Techniques in Alpine Terrain brings together early career and experienced scientists from technical-, geo- and environmental-related research fields. The interdisciplinary setting of the summer school creates a creative space for exchanging and learning new concepts and solutions for mapping, monitoring and quantifying mountain environments under ongoing conditions of change

    Genesis, conservation and deformation of ice-rich mountain permafrost:: Driving factors, mapping and geodetic monitoring

    Get PDF
    This thesis analyses ice-rich mountain permafrost with regard to its genesis, distribution, deformation and interaction with other environmental factors. The processes influencing ground ice formation in ice-rich and ice-poor mountain permafrost are highlighted. Factors influencing the presence of ice-rich permafrost are identified and their individual or combined effect on frozen ground is determined. Based on these findings, a new permafrost distribution map of Switzerland was created, which specifies permafrost temperature and ice contents and considers rock glacier creep paths. The deformation of rock glaciers is investigated with newly developed monitoring systems and concepts. This enables a better understanding of the processes leading to rock glacier acceleration at different time scales

    Soil Moisture & Snow Properties Determination with GNSS in Alpine Environments: Challenges, Status, and Perspectives

    Get PDF
    Moisture content in the soil and snow in the alpine environment is an important factor, not only for environmentally oriented research, but also for decision making in agriculture and hazard management. Current observation techniques quantifying soil moisture or characterizing a snow pack often require dedicated instrumentation that measures either at point scale or at very large (satellite pixel) scale. Given the heterogeneity of both snow cover and soil moisture in alpine terrain, observations of the spatial distribution of moisture and snow-cover are lacking at spatial scales relevant for alpine hydrometeorology. This paper provides an overview of the challenges and status of the determination of soil moisture and snow properties in alpine environments. Current measurement techniques and newly proposed ones, based on the reception of reflected Global Navigation Satellite Signals (i.e., GNSS Reflectometry or GNSS-R), or the use of laser scanning are reviewed, and the perspectives offered by these new techniques to fill the current gap in the instrumentation level are discussed. Some key enabling technologies including the availability of modernized GNSS signals and GNSS array beamforming techniques are also considered and discussed

    Accuracy of UAV Photogrammetry in Glacial and Periglacial Alpine Terrain: A Comparison With Airborne and Terrestrial Datasets

    Get PDF
    Unoccupied Aerial Vehicles (UAVs) equipped with optical instruments are increasingly deployed in high mountain environments to investigate and monitor glacial and periglacial processes. The comparison and fusion of UAV data with airborne and terrestrial data offers the opportunity to analyse spatio-temporal changes in the mountains and to upscale findings from local UAV surveys to larger areas. However, due to the lack of gridded high-resolution data in alpine terrain, the specific challenges and uncertainties associated with the comparison and fusion of multi-temporal data from different platforms in this environment are not well known. Here we make use of UAV, airborne, and terrestrial data from four (peri)glacial alpine study sites with different topographic settings. The aim is to assess the accuracy of UAV photogrammetric products in complex terrain, to point out differences to other products, and to discuss best practices regarding the fusion of multi-temporal data. The surface geometry and characteristic geomorphological features of the four alpine sites are well captured by the UAV data, but the positional accuracies vary greatly. They range from 15 cm (root-mean-square error) for the smallest survey area (0.2 km2) with a high ground control point (GCP) density (40 GCPs km−2) to 135 cm for the largest survey area (>2.5 km2) with a lower GCP density (<10 GCPs km−2). Besides a small number and uneven distribution of GCPs, a low contrast, and insufficient lateral image overlap (<50–70%) seem to be the main causes for the distortions and artefacts found in the UAV data. Deficiencies both in the UAV and airborne data are the reason for horizontal deviations observed between the datasets. In steep terrain, horizontal deviations of a few decimetres may result in surface elevation change errors of several metres. An accurate co-registration and evaluation of multi-temporal UAV, airborne, and terrestrial data using tie points in stable terrain is therefore of utmost importance when it comes to the investigation of surface displacements and elevation changes in the mountains. To enhance the accuracy and quality of UAV photogrammetry, the use of UAVs equipped with multi-spectral cameras and high-precision positioning systems is recommended, especially in rugged terrain and snow-covered areas

    Spatially continuous snow depth mapping by aeroplane photogrammetry for annual peak of winter from 2017 to 2021 in open areas

    Get PDF
    Information on snow depth and its spatial distribution is important for numerous applications, including natural hazard management, snow water equivalent estimation for hydropower, the study of the distribution and evolution of flora and fauna, and the validation of snow hydrological models. Due to its heterogeneity and complexity, specific remote sensing tools are required to accurately map the snow depth distribution in Alpine terrain. To cover large areas (&gt;100 km2), airborne laser scanning (ALS) or aerial photogrammetry with large-format cameras is needed. While both systems require piloted aircraft for data acquisition, ALS is typically more expensive than photogrammetry but yields better results in forested terrain. While photogrammetry is slightly cheaper, it is limited due to its dependency on favourable acquisition conditions (weather, light conditions). In this study, we present photogrammetrically processed high-spatial-resolution (0.5 m) annual snow depth maps, recorded during the peak of winter over a 5-year period under different acquisition conditions over a study area around Davos, Switzerland. Compared to previously carried out studies, using the Vexcel UltraCam Eagle Mark 3 (M3) sensor improves the average ground sampling distance to 0.1 m at similar flight altitudes above ground. This allows for very detailed snow depth maps in open areas, calculated by subtracting a snow-off digital terrain model (DTM, acquired with ALS) from the snow-on digital surface models (DSMs) processed from the airborne imagery. Despite challenging acquisition conditions during the recording of the UltraCam images (clouds, shaded areas and fresh snow), 99 % of unforested areas were successfully photogrammetrically reconstructed. We applied masks (high vegetation, settlements, water, glaciers) to increase the reliability of the snow depth calculations. An extensive accuracy assessment was carried out using check points, the comparison to DSMs derived from unpiloted aerial systems and the comparison of snow-free DSM pixels to the ALS DTM. The results show a root mean square error of approximately 0.25 m for the UltraCam X and 0.15 m for the successor, the UltraCam Eagle M3. We developed a consistent and reliable photogrammetric workflow for accurate snow depth distribution mapping over large regions, capable of analysing snow distribution in complex terrain. This enables more detailed investigations on seasonal snow dynamics and can be used for numerous applications related to snow depth distribution, as well as serving as a ground reference for new modelling approaches and satellite-based snow depth mapping.</p

    New insights on permafrost genesis and conservation in talus slopes based on observations at Flüelapass, Eastern Switzerland

    Get PDF
    The talus slope at Flüelapass was the first mountain permafrost study site in Switzerland in the 1970s and the presence of ice-rich permafrost at the foot of the slope has been investigated in the context of several studies focusing on the role of snow cover distribution. We review previously developed hypotheses and present new ones using various data sources, such as temperature measurements in boreholes, a subaquatic DEM generated from unmanned aerial system (UAS) photogrammetry, terrestrial laser scan measurements of snow depth, geophysical ground investigations and automatic time-lapse photography. From this combination of data sources together with observations in the field, an interesting sequence of geomorphologic processes is established at Flüelapass. As a result we show how mass wasting processes can initiate the genesis and long-term conservation of ice-rich permafrost at the base of a talus slope
    • …
    corecore