217 research outputs found

    Monitoring Gearbox Using a Wireless Temperature Node Powered by Thermal Energy Harvesting Module

    Get PDF
    Condition monitoring (CM) of gearbox is a crucial activity due to its importance in power transmission for many industrial applications. Monitoring temperature is an effective mean to collect useful information about the healthy conditions of the gearbox. This study investigates the use of a novel wireless temperature node to monitor and diagnose different faults on a gearbox transmission system under different conditions. The wireless temperature node was fabricated with a novel feature that it is supplied by a thermoelectric generator module mounted on the gearbox house to be monitored so that the measurement system avoids the shortage of using a wired power sources or the requirement for recharging or changing batteries. Moreover, the temperatures from lubricating oils and housing are modelled empirically to implement a model based detection. The results show that this monitoring approach allows a number of common faults: tooth breakage, oil shortage, and shaft misalignment to be separated under different loads, which demonstrates the outstanding performance of the proposed system and thus suitable for online and automated condition monitoring

    Energy Harvesting Based Wireless Sensor Nodes for The Monitoring Temperature of Gearbox

    Get PDF
    Temperatures are effective indicators of the health of many ma-chines such as the wind turbine gearboxes, bearings, engines, etc. This paper pre-sents a novel wireless temperature sensor node powered by a thermal harvester for monitoring the status of gearboxes. A thermoelectric generator module (TEG) is optimized to harvest the electrical power from a heat source such as the gear-box undergoing such monitoring. The power generation from this method is ob-tained based on temperature gradients emanated by sandwiching the TEG be-tween the two aluminum plates. One plate is exposed to the heat source and has the role of a heat collector, whereas the other plate, mounted with a low profile heat-sink, acts as a heat spreader. The harvested power is then used to power a wireless temperature node for condition monitoring, resulting in a powerless and wireless monitoring system. To evaluate the system, an industrial gearbox is monitored by the designed temperature node. The node is fabricated using a TEG module; an LTC3108 DC-DC converter for boosting the voltage, a super-capacitor for energy storage and a CC2650 sensor tag for measuring the temperature of the gearbox. The temper-ature data is transferred via the Bluetooth Low Energy and then monitored using portable monitoring devices, such as a mobile phones. The results obtained show the system can provide a continuous monitoring of the temperature information

    THERMAL ENERGY HARVESTING IN WIRELESS SENSOR NODES USED FOR CONDITION MONITORING

    Get PDF
    Presently, wireless sensor notes (WSN) are widely investigated and used in condition monitoring on industrial process monitoring and control, based on their inherent advantages of lower maintenance cost, easy installation and the ability to be installed in places not reached easily. However, current WSN based monitoring system still need dedicated power line or regular charging / replacing the batteries, which not only makes it difficult to deploy it in the fields but also degrades the operational reliability. This PhD research focuses on an investigation into energy harvesting approaches for powering WSN so as to develop a cost-effective, easy installation and reliable wireless measurement system for monitoring mission critical machinery such as multistage gearbox. Among various emerging energy harvest approaches such as vibrations, inductions, solar panels, thermal energy harvesting is deemed in this thesis to be the most promising one as almost all machines have frictional losses which manifest in terms of temperature changes and more convenient for integration as the heat sources can be close to wireless nodes. In the meantime, temperature based monitoring is adopted as its changes can be more sensitive to early health conditions of a machine when its tribological behaviour is starting to be degraded. Moreover, it has much less data output and more suitable for WSN application compared the mainstream vibration based monitoring techniques. Based on these two fundamental hypothesis, the research has been carried out according to two main milestones: the development of a thermoelectric harvesting (TEH) module and the evaluation of temperature based monitoring performances based on an industrial gearbox system. The first one involves the designing, fabricating and optimising the thermal EH module along with a WSN based temperature node and the second investigates the analysis methods to detect the temperature changes due to various faults associated with tribological mechanisms in the gearbox. In completing the first milestone, it has successfully developed a TEH module using cost-effective thermoelectric generator (TEG) devices and temperature gradient enhancement modules (heat sinks). Especially, the parameters such as their sizes and integration boundary conditions have been configured optimally by a proposed procedure based on the fine element (FE) analysis and the heat generation characteristics of machines to be monitored. The developed TEG analytic models and, FE models along with simulation study show that three different specifications of heat sinks with a Peltier TEG module are able to produce power that are consistently about 85% of the experimental values from offline tests, showing the good accuracy in predicting power output based on different applications and thus the reliability of the models proposed. And further investigation shows that a Peltier TEG module based that the thermal energy harvesting system produces is nearly 10 mW electricity from the monitored gearbox. This power is demonstrated sufficient to drive the WSN temperature node fabricated with low power consumption BLE microcontroller CC2650 sensor tags for monitoring continuously the temperature changes of the gearbox. Moreover, it has developed model based monitoring using multiple temperature measurements. The monitoring system allows two common faults oil shortages and mechanical misalignment to be detected and diagnosed, which demonstrates the specified performance of the self-power wireless temperature system for the purpose of condition monitoring

    Low power energy harvesting and storage techniques from ambient human powered energy sources

    Get PDF
    Conventional electrochemical batteries power most of the portable and wireless electronic devices that are operated by electric power. In the past few years, electrochemical batteries and energy storage devices have improved significantly. However, this progress has not been able to keep up with the development of microprocessors, memory storage, and sensors of electronic applications. Battery weight, lifespan and reliability often limit the abilities and the range of such applications of battery powered devices. These conventional devices were designed to be powered with batteries as required, but did not allow scavenging of ambient energy as a power source. In contrast, development in wireless technology and other electronic components are constantly reducing the power and energy needed by many applications. If energy requirements of electronic components decline reasonably, then ambient energy scavenging and conversion could become a viable source of power for many applications. Ambient energy sources can be then considered and used to replace batteries in some electronic applications, to minimize product maintenance and operating cost. The potential ability to satisfy overall power and energy requirements of an application using ambient energy can eliminate some constraints related to conventional power supplies. Also power scavenging may enable electronic devices to be completely self-sustaining so that battery maintenance can eventually be eliminated. Furthermore, ambient energy scavenging could extend the performance and the lifetime of the MEMS (Micro electromechanical systems) and portable electronic devices. These possibilities show that it is important to examine the effectiveness of ambient energy as a source of power. Until recently, only little use has been made of ambient energy resources, especially for wireless networks and portable power devices. Recently, researchers have performed several studies in alternative energy sources that could provide small amounts of electricity to low-power electronic devices. These studies were focused to investigate and obtain power from different energy sources, such as vibration, light, sound, airflow, heat, waste mechanical energy and temperature variations. This research studied forms of ambient energy sources such as waste mechanical (rotational) energy from hydraulic door closers, and fitness exercise bicycles, and its conversion and storage into usable electrical energy. In both of these examples of applications, hydraulic door closers and fitness exercise bicycles, human presence is required. A person has to open the door in order for the hydraulic door closer mechanism to function. Fitness exercise bicycles need somebody to cycle the pedals to generate electricity (while burning calories.) Also vibrations, body motions, and compressions from human interactions were studied using small piezoelectric fiber composites which are capable of recovering waste mechanical energy and converting it to useful electrical energy. Based on ambient energy sources, electrical energy conversion and storage circuits were designed and tested for low power electronic applications. These sources were characterized according to energy harvesting (scavenging) methods, and power and energy density. At the end of the study, the ambient energy sources were matched with possible electronic applications as a viable energy source

    Energy Harvesting Technologies for Achieving Self-Powered Wireless Sensor Networks in Machine Condition Monitoring:A Review

    Get PDF
    Condition monitoring can reduce machine breakdown losses, increase productivity and operation safety, and therefore deliver significant benefits to many industries. The emergence of wireless sensor networks (WSNs) with smart processing ability play an ever-growing role in online condition monitoring of machines. WSNs are cost-effective networking systems for machine condition monitoring. It avoids cable usage and eases system deployment in industry, which leads to significant savings. Powering the nodes is one of the major challenges for a true WSN system, especially when positioned at inaccessible or dangerous locations and in harsh environments. Promising energy harvesting technologies have attracted the attention of engineers because they convert microwatt or milliwatt level power from the environment to implement maintenance-free machine condition monitoring systems with WSNs. The motivation of this review is to investigate the energy sources, stimulate the application of energy harvesting based WSNs, and evaluate the improvement of energy harvesting systems for mechanical condition monitoring. This paper overviews the principles of a number of energy harvesting technologies applicable to industrial machines by investigating the power consumption of WSNs and the potential energy sources in mechanical systems. Many models or prototypes with different features are reviewed, especially in the mechanical field. Energy harvesting technologies are evaluated for further development according to the comparison of their advantages and disadvantages. Finally, a discussion of the challenges and potential future research of energy harvesting systems powering WSNs for machine condition monitoring is made

    Feasibility of a fully autonomous wireless monitoring system for a wind turbine blade

    Get PDF
    Condition monitoring (CM) of wind turbine blades has significant benefits for wind farm operators and insurers alike. Blades present a particular challenge in terms of operations and maintenance: the wide range of materials used in their construction makes it difficult to predict lifetimes; loading is stochastic and highly variable; and access can be problematic due to the remote locations where turbines are frequently located, particularly for offshore installations. Whilst previous works have indicated that Micro Electromechanical Systems (MEMS) accelerometers are viable devices for measuring the vibrations from which diagnostic information can be derived, thus far there has been no analysis of how such a system would be powered. This paper considers the power requirement of a self-powered blade-tip autonomous system and how those requirements can be met. The radio link budget is derived for the system and the average power requirement assessed. Following this, energy harvesting methods such as photovoltaics, vibration, thermal and radio frequency (RF) are explored. Energy storage techniques and energy regulation for the autonomous system are assessed along with their relative merits. It is concluded that vibration (piezoelectric) energy harvesting combined with lithium-ion batteries are suitable selections for such a system

    OBNOVLJIVI IZVORI ENERGIJE U BEŽIČNIM SENZORSKIM MREŽAMA

    Get PDF
    The advances in the technology of cheap and low power consumption microelectronic components have lead to the expansion of wireless technologies in the past two decades. One of the most important shortcomings of all wireless devices, including sensor ones, are limited energy resources. This paper reviews common mechanism of energy harvesting and energy scavenging, which draw power from the environment to feed the energy reserves in wireless sensor networks. They include conversion of the energy of electromagnetic waves, vibrations and heat.Razvoj jeftinih mikroelektronskih komponenti niske potrošnje uslovio je ekspanziju bežičnih tehnologija u zadnje dve dekade. Jedna od glavnih mana svih bežičnih uređaja, uključujući senzorske, jesu ograničeni energetski resursi. U ovom radu opisani su uobičajeni mehanizmi koji se koriste u „energy harvesting“ i „energy scavenging“ procedurama, kojima se snaga iz okoline koristi za dopunjavanje energetskih rezervi u bežičnim senzorskim mrežama. Oni uključuju konverziju energije elektromagnetskih talasa, vibracija i toplote

    Wireless Sensors for Health Monitoring of Marine Structures and Machinery

    Get PDF
    Remote structural and machinery health monitoring (SMHM) of marine structures such as ships, oil and gas rigs, freight container terminals, and marine energy platforms can ensure their reliability. However, the wired sensors currently used in these applications are difficult and expensive to install and maintain. Wireless Sensor Networks (WSN) can potentially replace them but there are significant capability gaps that currently prevent their long-term deployment in the harsh marine environment and the structurally-complex, compartmentalised, all-metal scenarios with high volume occupancy of piping, ducting and operational machinery represented by marine structures. These gaps are in sensing, processing and communication hardware and firmware capabilities, reduction of power consumption, hardware assembly and packaging for reliability in the marine environment, reliability of wireless connectivity in the complex metal structures, and software for WSN deployment planning in the marine environment. Taken together, these gaps highlight the need for a systems integration methodology for marine SMHM and this is the focus of the research presented in this thesis. The research takes an applied approach by first designing the hardware and firmware for two wireless sensing modules specifically for marine SMHM, one a novel eddy-current-based 3D module for measuring multi-axis metal structural displacement, the second a fully integrated module for monitoring of structure and machinery reliability. The research then addresses module assembly and packaging methods to ensure reliability in the marine environment, the development of an efficient methodology for characterising the reliability of wireless connectivity in complex metal structures, and development of user interface software for planning WSN deployment and for managing the collection of WSN data. These are then individually and collectively characterised and tested for performance and reliability in laboratory, land-based and marine deployments. In addition to the research outcomes in each of these individual aspects, the overall research outcome represents a systems integration methodology that now allows deployment, with a high expectation of reliability of marine SMHM WSNs
    corecore