227,202 research outputs found

    Modelling Chinese Smart Grid: A Stochastic Model Checking Case Study

    Get PDF
    Cyber-physical systems integrate information and communication technology functions to the physical elements of a system for monitoring and controlling purposes. The conversion of traditional power grid into a smart grid, a fundamental example of a cyber-physical system, raises a number of issues that require novel methods and applications. In this context, an important issue is the verification of certain quantitative properties of the system. In this technical report, we consider a specific Chinese Smart Grid implementation and try to address the verification problem for certain quantitative properties including performance and battery consumption. We employ stochastic model checking approach and present our modelling and analysis study using PRISM model checker

    Számítóháló alkalmazások teljesítményanalízise és optimalizációja = Performance analysis and optimisation of grid applications

    Get PDF
    Számítóhálón (griden) futó alkalmazások, elsősorban workflow-k hatékony végrehajtására kerestünk újszerű megoldásokat a grid teljesítményanalízis és optimalizáció területén. Elkészítettük a Mercury monitort a grid teljesítményanalízis követelményeit figyelembe véve. A párhuzamos programok monitorozására alkalmas GRM monitort integráltuk a relációs adatmodell alapú R-GMA grid információs rendszerrel, illetve a Mercury monitorral. Elkészült a Pulse, és a Prove vizualizációs eszköz grid teljesítményanalízist támogató verziója. Elkészítettünk egy state-of-the-art felmérést grid teljesítményanalízis eszközökről. Kidolgoztuk a P-GRADE rendszer workflow absztrakciós rétegét, melyhez kapcsolódóan elkészült a P-GRADE portál. Ennek segítségével a felhasználók egy web böngészőn keresztül szerkeszthetnek és hajthatnak végre workflow alkalmazásokat számítóhálón. A portál különböző számítóháló implementációkat támogat. Lehetőséget biztosít információ gyűjtésére teljesítményanalízis céljából. Megvizsgáltuk a portál erőforrás brókerekkel való együttműködését, felkészítettük a portált a sikertelen futások javítására. A végrehajtás optimalizálása megkövetelheti az alkalmazás egyes részeinek áthelyezését más erőforrásokra. Ennek támogatására továbbfejlesztettük a P-GRADE alkalmazások naplózhatóságát, és illesztettük a Condor feladatütemezőjéhez. Sikeresen kapcsoltunk a rendszerhez egy terhelés elosztó modult, mely képes a terheltségétől függően áthelyezni a folyamatokat. | We investigated novel approaches for performance analysis and optimization for efficient execution of grid applications, especially workflows. We took into consideration the special requirements of grid performance analysis when elaborated Mercury, a grid monitoring infrastructure. GRM, a performance monitor for parallel applications, has been integrated with R-GMA, a relational grid information system and Mercury as well. We developed Pulse and Prove visualisation tools for supporting grid performance analysis. We wrote a comprehensive state-of-the art survey of grid performance tools. We designed a novel abstraction layer of P-GRADE supporting workflows, and a grid portal. Users can draft and execute workflow applications in the grid via a web browser using the portal. The portal supports multiple grid implementations and provides monitoring capabilities for performance analysis. We tested the integration of the portal with grid resource brokers and also augmented it with some degree of fault-tolerance. Optimization may require the migration of parts of the application to different resources and thus, it requires support for checkpointing. We enhanced the checkpointing facilities of P-GRADE and coupled it to Condor job scheduler. We also extended the system with a load balancer module that is able to migrate processes as part of the optimization

    Characterization of non-intentional emissions from distributed energy resources up to 500 kHz: A case study in Spain

    Get PDF
    Narrow Band Power Line Communications (NB-PLC) systems are currently used for smart metering and power quality monitoring as a part of the Smart Grid (SG) concept. However, non-intentional emissions generated by the devices connected to the grid may sometimes disturb the communications and isolate metering equipment. Though some research works have been recently developed to characterize these emissions, most of them have been limited to frequencies below 150 kHz and they are mainly focused on in-house electronic appliances and lightning devices. As NB-PLC can also be allocated in higher frequencies up to 500 kHz, there is still a lack of analysis in this frequency range, especially for emissions from Distributed Energy Resources (DERs). The identification and characterization of the emissions is essential to develop solutions that avoid a negative impact on the proper performance of NB-PLC. In this work, the non-intentional emissions of different types of DERs composing a representative microgrid have been measured in the 35–500 kHz frequency range and analyzed both in time and frequency domains. Different working conditions and coupling and commutation procedures to mains are considered in the analysis. Results are then compared to the limits recommended by regulatory bodies for spurious emissions from communication systems in this frequency band, as no specific limits for DERs have been established. Field measurements show clear differences in the characteristics of non-intentional emissions for different devices, working conditions and coupling procedures and for frequencies below and above 150 kHz. Results of this study demonstrate that a further characterization of the potential emissions from the different types of DERs connected to the grid is required in order to guarantee current and future applications based on NB-PLC.This work has been financially supported in part by the Basque Government (Elkartek program)

    Synchronized measurement data conditioning and real-time applications

    Get PDF
    Phasor measurement units (PMU), measuring voltage and current phasor with synchronized timestamps, is the fundamental component in wide-area monitoring systems (WAMS) and reveals complex dynamic behaviors of large power systems. The synchronized measurements collected from power grid may degrade due to many factors and impacts of the distorted synchronized measurement data are significant to WAMS. This dissertation focus on developing and improving applications with distorted synchronized measurements from power grid. The contributions of this dissertation are summarized below. In Chapter 2, synchronized frequency measurements of 13 power grids over the world, including both mainland and island systems, are retrieved from Frequency Monitoring Network (FNET/GridEye) and the statistical analysis of the typical power grids are presented. The probability functions of the power grid frequency based on the measurements are calculated and categorized. Developments of generation trip/load shedding and line outage events detection and localization based on high-density PMU measurements are investigated in Chapters 3 and 4 respectively. Four different types of abnormal synchronized measurements are identified from the PMU measurements of a power grid. The impacts of the abnormal synchronized measurements on generation trip/load shedding events detection and localization are evaluated. A line outage localization method based on power flow measurements is proposed to improve the accuracy of line outage events location estimation. A deep learning model is developed to detect abnormal synchronized measurements in Chapter 5. The performance of the model is evaluated with abnormal synchronized measurements from a power grid under normal operation status. Some types of abnormal synchronized measurements in the testing cases are recently observed and reported. An extensive study of hyper-parameters in the model is conducted and evaluation metrics of the model performance are presented. A non-contact synchronized measurements study using electric field strength is investigated in Chapter 6. The theoretical foundation and equation derivations are presented. The calculation process for a single circuit AC transmission line and a double circuit AC transmission line are derived. The derived method is implemented with Matlab and tested in simulation cases

    Mobile Computing in Physics Analysis - An Indicator for eScience

    Full text link
    This paper presents the design and implementation of a Grid-enabled physics analysis environment for handheld and other resource-limited computing devices as one example of the use of mobile devices in eScience. Handheld devices offer great potential because they provide ubiquitous access to data and round-the-clock connectivity over wireless links. Our solution aims to provide users of handheld devices the capability to launch heavy computational tasks on computational and data Grids, monitor the jobs status during execution, and retrieve results after job completion. Users carry their jobs on their handheld devices in the form of executables (and associated libraries). Users can transparently view the status of their jobs and get back their outputs without having to know where they are being executed. In this way, our system is able to act as a high-throughput computing environment where devices ranging from powerful desktop machines to small handhelds can employ the power of the Grid. The results shown in this paper are readily applicable to the wider eScience community.Comment: 8 pages, 7 figures. Presented at the 3rd Int Conf on Mobile Computing & Ubiquitous Networking (ICMU06. London October 200
    • …
    corecore