194 research outputs found

    Toward a comprehensive dam monitoring: On-site and remote-retrieved forcing factors and resulting displacements (gnss and ps–insar)

    Get PDF
    Many factors can influence the displacements of a dam, including water level variability and environmental temperatures, in addition to the dam composition. In this work, optical-based classification, thermal diachronic analysis, and a quasi-PS (Persistent Scatter) Interferometric SAR technique have been applied to determine both forcing factors and resulting displacements of the crest of the Castello dam (South Italy) over a one-year time period. The dataset includes Sentinel-1A images acquired in Interferometric Wide swath mode using the Terrain Observation with Progressive Scans SAR (TOPSAR); Landsat 8 Thermal Infrared Sensor (TIRS) thermal images, and Global Navigation Satellite System (GNSS) for interpreting the motion of the top of the dam retrieved via interferometry. Results suggest that it is possible to monitor both dam water level and temperature periodic forcing factors and resulting displacements via a synergistic use of different satellite images

    Toward a Comprehensive Dam Monitoring: On-Site and Remote-Retrieved Forcing Factors and Resulting Displacements (GNSS and PS–InSAR)

    Get PDF
    Many factors can influence the displacements of a dam, including water level variability and environmental temperatures, in addition to the dam composition. In this work, optical-based classification, thermal diachronic analysis, and a quasi-PS (Persistent Scatter) Interferometric SAR technique have been applied to determine both forcing factors and resulting displacements of the crest of the Castello dam (South Italy) over a one-year time period. The dataset includes Sentinel-1A images acquired in Interferometric Wide swath mode using the Terrain Observation with Progressive Scans SAR (TOPSAR); Landsat 8 Thermal Infrared Sensor (TIRS) thermal images, and Global Navigation Satellite System (GNSS) for interpreting the motion of the top of the dam retrieved via interferometry. Results suggest that it is possible to monitor both dam water level and temperature periodic forcing factors and resulting displacements via a synergistic use of different satellite images

    A Review of Selected Applications of GNSS CORS and Related Experiences at the University of Palermo (Italy)

    Get PDF
    Services from the Continuously Operating Reference Stations (CORS) of the Global Navigation Satellite System (GNSS) provide data and insights to a range of research areas such as physical sciences, engineering, earth and planetary sciences, computer science, and environmental science. Even though these fields are varied, they are all linked through the GNSS operational application. GNSS CORS have historically been deployed for three-dimensional positioning but also for the establishment of local and global reference systems and the measurement of ionospheric and tropospheric errors. In addition to these studies, CORS is uncovering new, emerging scientific applications. These include real-time monitoring of land subsidence via network real-time kinematics (NRTK) or precise point positioning (PPP), structural health monitoring (SHM), earthquake and volcanology monitoring, GNSS reflectometry (GNSS-R) for mapping soil moisture content, precision farming with affordable receivers, and zenith total delay to aid hydrology and meteorology. The flexibility of CORS infrastructure and services has paved the way for new research areas. The aim of this study is to present a curated selection of scientific papers on prevalent topics such as network monitoring, reference frames, and structure monitoring (like dams), along with an evaluation of CORS performance. Concurrently, it reports on the scientific endeavours undertaken by the Geomatics Research Group at the University of Palermo in the realm of GNSS CORS over the past 15 years

    Aspectos técnico-científicos de barragens no Brasil: uma abordagem teórica

    Get PDF
    The safety of a dam is the result of a series of factors, including structural, geotechnical, hydraulic, operational and environmental aspects. In Brazil, Law No. 12.334 of September 2010 establishes the National Dam Safety Policy, which requires safety reports and monitoring inspections for existing dams. The inspection comprises a set of devices installed on the dam, which are used to assess the structural behavior based on performance parameters of the structure, such as displacements, flows, stresses, slopes and others. Dam auscultation procedures, historically, have been performed since the 1950s. Since then, there have been significant advances in instrumentation and dam auscultation methods. This work presents a theoretical approach on technical and scientific aspects of dams in Brazil, based on a state-of-the-art literature review, involving auscultation of dams in the context of design codes, concepts, instrumentation, safety, procedures and monitoring methods.A segurança de uma barragem é resultante de uma série de fatores, dentre os quais podem ser citados aspectos estruturais, geotécnicos, hidráulicos, operacionais e ambientais. No Brasil, a Lei nº 12.334 de setembro de 2010 estabelece a Política Nacional de Segurança de Barragens. A instrumentação compõe um conjunto de dispositivos instalados nas barragens, que são utilizados para avaliar o seu comportamento estrutural a partir de parâmetros de desempenho da estrutura, tais como deslocamentos, vazões, tensões, inclinações e outros. Procedimentos de auscultação de barragens, historicamente, tem sido realizado desde a década de 50, conforme a literatura. Desde então, houve avanços significativos na instrumentação e nos métodos de auscultação de barragens. Este trabalho tem como objetivo apresentar uma abordagem teórica sobre aspectos técnico-científicos de barragens no Brasil, fundamentada numa revisão de literatura no estado da arte, envolvendo auscultação de barragens no contexto de normas, conceitos, instrumentação, segurança, procedimentos e métodos de monitoramento.Uminho -Universidade do Minho(undefined

    Estimating and comparing dam deformation using classical and gnss techniques

    Get PDF
    Global Navigation Satellite Systems (GNSS) receivers are nowadays commonly used in monitoring applications, e.g., in estimating crustal and infrastructure displacements. This is basically due to the recent improvements in GNSS instruments and methodologies that allow high-precision positioning, 24 h availability and semiautomatic data processing. In this paper, GNSS-estimated displacements on a dam structure have been analyzed and compared with pendulum data. This study has been carried out for the Eleonora D'Arborea (Cantoniera) dam, which is in Sardinia. Time series of pendulum and GNSS over a time span of 2.5 years have been aligned so as to be comparable. Analytical models fitting these time series have been estimated and compared. Those models were able to properly fit pendulum data and GNSS data, with standard deviation of residuals smaller than one millimeter. These encouraging results led to the conclusion that GNSS technique can be profitably applied to dam monitoring allowing a denser description, both in space and time, of the dam displacements than the one based on pendulum observations

    GNSS-based dam monitoring: The application of a statistical approach for time series analysis to a case study

    Get PDF
    Dams are one of the most important engineering works of the current human society, and it is crucial to monitor and obtain analytical data to log their conditions, predict their behavior and, eventually, receive early warnings for planning interventions and maintenance activities. In this context, GNSS-based point displacement monitoring is nowadays a consolidated technique that is able to provide daily millimeter level accuracy, even with less sophisticated and less expensive single-frequency equipment. If properly designed, daily records of such monitoring systems produce time series that, when long enough, allow for an accurate reconstruction of the geometrical deformation of the structure, thus guiding semi-automatic early warning systems. This paper focuses on the procedure for the GNSS time series processing with a statistical approach. In particular, real-world times series collected from a dam monitoring test case are processed as an example of data filtering. A remove–restore technique based on a collocation approach is applied here. Basically, it consists of an initial deterministic modeling by polynomials and periodical components through least squares adjustment and Fourier transform, respectively, followed by a stochastic modeling based on empirical covariance estimation and a collocation approach. Filtered time series are interpreted by autoregressive models based on environmental factors such as air or water temperature and reservoir water level. Spatial analysis is finally performed by computing correlations between displacements of the monitored points, as well as by visualizing the overall structure deformation in time. Results positively validate the proposed data processing workflow, providing useful hints for the implementation of automatic early warning systems in the framework of structural monitoring based on continuous displacement measurements

    An integrated geodetic and InSAR technique for the monitoring and detection of active faulting in southwestern Sicily

    Get PDF
    We present the results of the analysis of GNSS (Global Navigation Satellite System) and InSAR (Interferometric synthetic-aperture radar) data collected in the frame of a project financed by the “Struttura Terremoti” of INGV (Istituto Nazionale di Geofisica e Vulcanologia). Combined investigations pointed out for potential seismogenic sources for destructive earthquakes recorded in southwestern Sicily, including the 1968 Belice earthquake sequence and that supposed to have destroyed the Greek city of Selinunte which, according to geoarcheological data experienced two earthquakes in historical times. Our approach is aimed to evaluate the current deformation rate in SW Sicily and to improve the knowledge about the seismic potential of this area. The geodetic data proposed in this paper show that the Campobello di Mazara–Castelvetrano alignment (CCA) is currently deforming with a vertical and horizontal displacements of 2 mm/yr and 0.5 mm/yr respectively, according to the tectonic setting of the are

    Geodetic monitoring of complex shaped infrastructures using Ground-Based InSAR

    Get PDF
    In the context of climate change, alternatives to fossil energies need to be used as much as possible to produce electricity. Hydroelectric power generation through the utilisation of dams stands out as an exemplar of highly effective methodologies in this endeavour. Various monitoring sensors can be installed with different characteristics w.r.t. spatial resolution, temporal resolution and accuracy to assess their safe usage. Among the array of techniques available, it is noteworthy that ground-based synthetic aperture radar (GB-SAR) has not yet been widely adopted for this purpose. Despite its remarkable equilibrium between the aforementioned attributes, its sensitivity to atmospheric disruptions, specific acquisition geometry, and the requisite for phase unwrapping collectively contribute to constraining its usage. Several processing strategies are developed in this thesis to capitalise on all the opportunities of GB-SAR systems, such as continuous, flexible and autonomous observation combined with high resolutions and accuracy. The first challenge that needs to be solved is to accurately localise and estimate the azimuth of the GB-SAR to improve the geocoding of the image in the subsequent step. A ray tracing algorithm and tomographic techniques are used to recover these external parameters of the sensors. The introduction of corner reflectors for validation purposes confirms a significant error reduction. However, for the subsequent geocoding, challenges persist in scenarios involving vertical structures due to foreshortening and layover, which notably compromise the geocoding quality of the observed points. These issues arise when multiple points at varying elevations are encapsulated within a singular resolution cell, posing difficulties in pinpointing the precise location of the scattering point responsible for signal return. To surmount these hurdles, a Bayesian approach grounded in intensity models is formulated, offering a tool to enhance the accuracy of the geocoding process. The validation is assessed on a dam in the black forest in Germany, characterised by a very specific structure. The second part of this thesis is focused on the feasibility of using GB-SAR systems for long-term geodetic monitoring of large structures. A first assessment is made by testing large temporal baselines between acquisitions for epoch-wise monitoring. Due to large displacements, the phase unwrapping can not recover all the information. An improvement is made by adapting the geometry of the signal processing with the principal component analysis. The main case study consists of several campaigns from different stations at Enguri Dam in Georgia. The consistency of the estimated displacement map is assessed by comparing it to a numerical model calibrated on the plumblines data. It exhibits a strong agreement between the two results and comforts the usage of GB-SAR for epoch-wise monitoring, as it can measure several thousand points on the dam. It also exhibits the possibility of detecting local anomalies in the numerical model. Finally, the instrument has been installed for continuous monitoring for over two years at Enguri Dam. An adequate flowchart is developed to eliminate the drift happening with classical interferometric algorithms to achieve the accuracy required for geodetic monitoring. The analysis of the obtained time series confirms a very plausible result with classical parametric models of dam deformations. Moreover, the results of this processing strategy are also confronted with the numerical model and demonstrate a high consistency. The final comforting result is the comparison of the GB-SAR time series with the output from four GNSS stations installed on the dam crest. The developed algorithms and methods increase the capabilities of the GB-SAR for dam monitoring in different configurations. It can be a valuable and precious supplement to other classical sensors for long-term geodetic observation purposes as well as short-term monitoring in cases of particular dam operations

    Geodetic and Remote-Sensing Sensors for Dam Deformation Monitoring

    Get PDF
    In recent years, the measurement of dam displacements has benefited from a great improvement of existing technology, which has allowed a higher degree of automation. This has led to data collection with an improved temporal and spatial resolution. Robotic total stations and GNSS (Global Navigation Satellite System) techniques, often in an integrated manner, may provide efficient solutions for measuring 3D displacements on precise locations on the outer surfaces of dams. On the other hand, remote-sensing techniques, such as terrestrial laser scanning, ground-based SAR (synthetic aperture radar) and satellite differential interferometric SAR offer the chance to extend the observed region to a large portion of a structure and its surrounding areas, integrating the information that is usually provided in a limited number of in-situ control points. The design and implementation of integrated monitoring systems have been revealed as a strategic solution to analyze different situations in a spatial and temporal context. Research devoted to the optimization of data processing tools has evolved with the aim of improving the accuracy and reliability of the measured deformations. The analysis of the observed data for the interpretation and prediction of dam deformations under external loads has been largely investigated on the basis of purely statistical or deterministic methods. The latter may integrate observation from geodetic, remote-sensing and geotechnical/structural sensors with mechanical models of the dam structure. In this paper, a review of the available technologies for dam deformation monitoring is provided, including those sensors that are already applied in routinary operations and some experimental solutions. The aim was to support people who are working in this field to have a complete view of existing solutions, as well as to understand future directions and trends

    Dam Deformation Monitoring using Cloud-Based P-SBAS Algorithm: The Kramis Dam Case (Algeria)

    Get PDF
    This paper presents the application of the Parallel Small Baseline Subset (P-SBAS) algorithm, provided by the Geohazards Exploitation Platform for the precise monitoring of an earth dam's ground deformation using C-band Sentinel-1 data. The test site object of this study was the Kramis dam, located in the Mostaganem State, Western Algeria. Among the multiple advanced DInSAR techniques, SBAS is very adequate for long-term displacement monitoring in areas with changing terrain and vegetation. Ten corner reflectors were installed as a backscattered radar signal amplification tool to reduce the effect of temporal decorrelation and delineate the dam area. Four Sentinel-1 A and B satellite tracks were available (T30, T37, T103, and T110) to measure displacements, in the Line of Site (LoS) direction, for two years since the installation of the CRs in July 2019. The results showed a subsiding area on the left bank of the dam dike, with a velocity of 4mm/yr, and an uplifting rate of 3-4mm/yr in the upper part of the dike. The entire 3-dimensional vector of displacement of the dam vicinity was estimated using the least-squares method, proving a better understanding of the dam's temporal deformation, particularly for dams with a high exposure factor and associated risk
    • …
    corecore