56,675 research outputs found

    MonALISA : A Distributed Monitoring Service Architecture

    Full text link
    The MonALISA (Monitoring Agents in A Large Integrated Services Architecture) system provides a distributed monitoring service. MonALISA is based on a scalable Dynamic Distributed Services Architecture which is designed to meet the needs of physics collaborations for monitoring global Grid systems, and is implemented using JINI/JAVA and WSDL/SOAP technologies. The scalability of the system derives from the use of multithreaded Station Servers to host a variety of loosely coupled self-describing dynamic services, the ability of each service to register itself and then to be discovered and used by any other services, or clients that require such information, and the ability of all services and clients subscribing to a set of events (state changes) in the system to be notified automatically. The framework integrates several existing monitoring tools and procedures to collect parameters describing computational nodes, applications and network performance. It has built-in SNMP support and network-performance monitoring algorithms that enable it to monitor end-to-end network performance as well as the performance and state of site facilities in a Grid. MonALISA is currently running around the clock on the US CMS test Grid as well as an increasing number of other sites. It is also being used to monitor the performance and optimize the interconnections among the reflectors in the VRVS system.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 8 pages, pdf. PSN MOET00

    An Integrated Model for Monitoring Nodes in Computer Networks

    Get PDF
    Monitoring complex computer network environment is now a very challenging task for network administrators despite the various existing monitoring applications for networks that are faced with the issues of centralized monitoring, which causes network traffic, reduces network bandwidth, and are unable to concurrently run two or more network services. This research paper was designed to tackle the problems exhibited by the existing network monitoring application by integrating different network monitoring services in a single model using the power of agent’s distributed processing and monitoring services. Data about the existing and proposed model was gathered using key informant interview approach, and observation of the existing software. Iterative software model was adopted as the software development life cycle based on its strengths and suitability. The proposed model was developed using use-case and sequence diagrams. Suitable programming languages and development environment such as Java, JavaScript, Hypertext Preprocessor, Hypertext markup language and MySQL were used in coding the software prototype. The functionality of the proposed system was tested and results showed that the proposed system has 100% anomaly network intrusion detection rate and better functional features as compared to the existing network monitoring applications observed

    Towards Grid Monitoring and deployment in Jade, using ProActive

    Get PDF
    This document describes our current effort to gridify Jade, a java-based environment for the autonomic management of clustered J2EE application servers, developed in the INRIA SARDES research team. Towards this objective, we use the java ProActive grid technology. We first present some of the challenges to turn such an autonomic management system initially dedicated to distributed applications running on clusters of machines, into one that can provide self-management capabilities to large-scale systems, i.e. deployed on grid infrastructures. This leads us to a brief state of the art on grid monitoring systems. Then, we recall the architecture of Jade, and consequently propose to reorganize it in a potentially more scalable way. Practical experiments pertain to the use of the grid deployment feature offered by ProActive to easily conduct the deployment of the Jade system or its revised version on any sort of grid

    Mobile Computing in Physics Analysis - An Indicator for eScience

    Full text link
    This paper presents the design and implementation of a Grid-enabled physics analysis environment for handheld and other resource-limited computing devices as one example of the use of mobile devices in eScience. Handheld devices offer great potential because they provide ubiquitous access to data and round-the-clock connectivity over wireless links. Our solution aims to provide users of handheld devices the capability to launch heavy computational tasks on computational and data Grids, monitor the jobs status during execution, and retrieve results after job completion. Users carry their jobs on their handheld devices in the form of executables (and associated libraries). Users can transparently view the status of their jobs and get back their outputs without having to know where they are being executed. In this way, our system is able to act as a high-throughput computing environment where devices ranging from powerful desktop machines to small handhelds can employ the power of the Grid. The results shown in this paper are readily applicable to the wider eScience community.Comment: 8 pages, 7 figures. Presented at the 3rd Int Conf on Mobile Computing & Ubiquitous Networking (ICMU06. London October 200

    A study of publish/subscribe systems for real-time grid monitoring

    Get PDF
    Monitoring and controlling a large number of geographically distributed scientific instruments is a challenging task. Some operations on these instruments require real-time (or quasi real-time) response which make it even more difficult. In this paper, we describe the requirements of distributed monitoring for a possible future electrical power grid based on real-time extensions to grid computing. We examine several standards and publish/subscribe middleware candidates, some of which were specially designed and developed for grid monitoring. We analyze their architecture and functionality, and discuss the advantages and disadvantages. We report on a series of tests to measure their real-time performance and scalability
    • …
    corecore