29,332 research outputs found

    On effectiveness of lossless compression in transferring mHealth data files

    Full text link
    Abstract—The health and fitness data traffic originating on mobile devices has been continually increasing, with an exponen-tial increase in the number of personal wearable devices and mobile health monitoring applications. Lossless data compression can increase throughput, reduce latency, and achieve energy-efficient communication between personal devices and the cloud. This paper experimentally explores the effectiveness of common compression utilities on mobile devices when uploading and downloading a representative mHealth data set. Based on the results of our study, we develop recommendations for effective data transfers that can assist mHealth application developers. Keywords—mobile sensing; health monitoring; wearable devic-es; data communication. I

    Data as a Service (DaaS) for sharing and processing of large data collections in the cloud

    Get PDF
    Data as a Service (DaaS) is among the latest kind of services being investigated in the Cloud computing community. The main aim of DaaS is to overcome limitations of state-of-the-art approaches in data technologies, according to which data is stored and accessed from repositories whose location is known and is relevant for sharing and processing. Besides limitations for the data sharing, current approaches also do not achieve to fully separate/decouple software services from data and thus impose limitations in inter-operability. In this paper we propose a DaaS approach for intelligent sharing and processing of large data collections with the aim of abstracting the data location (by making it relevant to the needs of sharing and accessing) and to fully decouple the data and its processing. The aim of our approach is to build a Cloud computing platform, offering DaaS to support large communities of users that need to share, access, and process the data for collectively building knowledge from data. We exemplify the approach from large data collections from health and biology domains.Peer ReviewedPostprint (author's final draft

    On the Deployment of Healthcare Applications over Fog Computing Infrastructure

    Get PDF
    Fog computing is considered as the most promising enhancement of the traditional cloud computing paradigm in order to handle potential issues introduced by the emerging Interned of Things (IoT) framework at the network edge. The heterogeneous nature, the extensive distribution and the hefty number of deployed IoT nodes will disrupt existing functional models, creating confusion. However, IoT will facilitate the rise of new applications, with automated healthcare monitoring platforms being amongst them. This paper presents the pillars of design for such applications, along with the evaluation of a working prototype that collects ECG traces from a tailor-made device and utilizes the patient's smartphone as a Fog gateway for securely sharing them to other authorized entities. This prototype will allow patients to share information to their physicians, monitor their health status independently and notify the authorities rapidly in emergency situations. Historical data will also be available for further analysis, towards identifying patterns that may improve medical diagnoses in the foreseeable future

    The case for cloud service trustmarks and assurance-as-a-service

    Get PDF
    Cloud computing represents a significant economic opportunity for Europe. However, this growth is threatened by adoption barriers largely related to trust. This position paper examines trust and confidence issues in cloud computing and advances a case for addressing them through the implementation of a novel trustmark scheme for cloud service providers. The proposed trustmark would be both active and dynamic featuring multi-modal information about the performance of the underlying cloud service. The trustmarks would be informed by live performance data from the cloud service provider, or ideally an independent third-party accountability and assurance service that would communicate up-to-date information relating to service performance and dependability. By combining assurance measures with a remediation scheme, cloud service providers could both signal dependability to customers and the wider marketplace and provide customers, auditors and regulators with a mechanism for determining accountability in the event of failure or non-compliance. As a result, the trustmarks would convey to consumers of cloud services and other stakeholders that strong assurance and accountability measures are in place for the service in question and thereby address trust and confidence issues in cloud computing
    corecore