444 research outputs found

    A double closed loop to enhance the quality of life of Parkinson's disease patients: REMPARK system

    Get PDF
    This paper presents REMPARK system, a novel approach to deal with Parkinson's Disease (PD). REMPARK system comprises two closed loops of actuation onto PD. The first loop consists in a wearable system that, based on a belt-worn movement sensor, detects movement alterations that activate an auditory cueing system controlled by a smartphone in order to improve patient's gait. The belt-worn sensor analyzes patient's movement through real-time learning algorithms that were developed on the basis of a database previously collected from 93 PD patients. The second loop consists in disease management based on the data collected during long periods and that enables neurologists to tailor medication of their PD patients and follow the disease evolution. REMPARK system is going to be tested in 40 PD patients in Spain, Ireland, Italy and Israel. This paper describes the approach followed to obtain this system, its components, functionalities and trials in which the system will be validated.Postprint (published version

    Wearable Platform for Automatic Recognition of Parkinson Disease by Muscular Implication Monitoring

    Get PDF
    The need for diagnostic tools for the characterization of progressive movement disorders - as the Parkinson Disease (PD) - aiming to early detect and monitor the pathology is getting more and more impelling. The parallel request of wearable and wireless solutions, for the real-time monitoring in a non-controlled environment, has led to the implementation of a Quantitative Gait Analysis platform for the extraction of muscular implications features in ordinary motor action, such as gait. The here proposed platform is used for the quantification of PD symptoms. Addressing the wearable trend, the proposed architecture is able to define the real-time modulation of the muscular indexes by using 8 EMG wireless nodes positioned on lower limbs. The implemented system “translates” the acquisition in a 1-bit signal, exploiting a dynamic thresholding algorithm. The resulting 1-bit signals are used both to define muscular indexes both to drastically reduce the amount of data to be analyzed, preserving at the same time the muscular information. The overall architecture has been fully implemented on Altera Cyclone V FPGA. The system has been tested on 4 subjects: 2 affected by PD and 2 healthy subjects (control group). The experimental results highlight the validity of the proposed solution in Disease recognition and the outcomes match the clinical literature results

    Technology in Parkinson's disease:challenges and opportunities

    Get PDF
    The miniaturization, sophistication, proliferation, and accessibility of technologies are enabling the capture of more and previously inaccessible phenomena in Parkinson's disease (PD). However, more information has not translated into a greater understanding of disease complexity to satisfy diagnostic and therapeutic needs. Challenges include noncompatible technology platforms, the need for wide-scale and long-term deployment of sensor technology (among vulnerable elderly patients in particular), and the gap between the "big data" acquired with sensitive measurement technologies and their limited clinical application. Major opportunities could be realized if new technologies are developed as part of open-source and/or open-hardware platforms that enable multichannel data capture sensitive to the broad range of motor and nonmotor problems that characterize PD and are adaptable into self-adjusting, individualized treatment delivery systems. The International Parkinson and Movement Disorders Society Task Force on Technology is entrusted to convene engineers, clinicians, researchers, and patients to promote the development of integrated measurement and closed-loop therapeutic systems with high patient adherence that also serve to (1) encourage the adoption of clinico-pathophysiologic phenotyping and early detection of critical disease milestones, (2) enhance the tailoring of symptomatic therapy, (3) improve subgroup targeting of patients for future testing of disease-modifying treatments, and (4) identify objective biomarkers to improve the longitudinal tracking of impairments in clinical care and research. This article summarizes the work carried out by the task force toward identifying challenges and opportunities in the development of technologies with potential for improving the clinical management and the quality of life of individuals with PD. © 2016 International Parkinson and Movement Disorder Society

    Impact of motor fluctuations on real-life gait in Parkinson’s patients

    Get PDF
    Background people with PD (PWP) have an increased risk of becoming inactive. Wearable sensors can provide insights into daily physical activity and walking patterns. Research questions (1) is the severity of motor fluctuations associated with sensor-derived average daily walking quantity? (2) is the severity of motor fluctuations associated with the amount of change in sensor-derived walking quantity after levodopa intake? Methods 304 Dutch PWP from the Parkinson@Home study were included. At baseline, all participants received a clinical examination. During the follow-up period (median: 97 days; 25-Interquartile range-IQR: 91 days, 75-IQR: 188 days), participants used the Fox Wearable Companion app and streamed smartwatch accelerometer data to a cloud platform. The first research question was assessed by linear regression on the sensor-derived mean time spent walking/day with the severity of fluctuations (MDS-UPDRS item 4.4) as independent variable, controlled for age and MDS-UPDRS part-III score. The second research question was assessed by linear regression on the sensor-derived mean post-levodopa walking quantity, with the sensor-derived mean pre-levodopa walking quantity and severity of fluctuations as independent variables, controlled for mean time spent walking per day, age and MDS-UPDRS part-III score. Results PWP spent most time walking between 8am and 1pm, summing up to 72 ± 39 (mean ± standard deviation) minutes of walking/day. The severity of motor fluctuations did not influence the mean time spent walking (B = 2.4 ± 1.9, p = 0.20), but higher age (B = −1.3 ± 0.3, p = < 0.001) and greater severity of motor symptoms (B = −0.6 ± 0.2, p < 0.001) was associated with less time spent walking (F(3,216) = 14.6, p<.001, R2 =.17). The severity of fluctuations was not associated with the amount of change in time spent walking in relation to levodopa intake in any part of the day. Significance Analysis of sensor-derived gait quantity suggests that the severity of motor fluctuations is not associated with changes in real-life walking patterns in mildly to moderate affected PWP

    Free-living monitoring of Parkinson’s disease: lessons from the field

    Get PDF
    Wearable technology comprises miniaturized sensors (e.g. accelerometers) worn on the body and/or paired with mobile devices (e.g. smart phones) allowing continuous patient monitoring in unsupervised, habitual environments (termed free-living). Wearable technologies are revolutionising approaches to healthcare due to their utility, accessibility and affordability. They are positioned to transform Parkinson’s disease (PD) management through provision of individualised, comprehensive, and representative data. This is particularly relevant in PD where symptoms are often triggered by task and free-living environmental challenges that cannot be replicated with sufficient veracity elsewhere. This review concerns use of wearable technology in free-living environments for people with PD. It outlines the potential advantages of wearable technologies and evidence for these to accurately detect and measure clinically relevant features including motor symptoms, falls risk, freezing of gait, gait, functional mobility and physical activity. Technological limitations and challenges are highlighted and advances concerning broader aspects are discussed. Recommendations to overcome key challenges are made. To date there is no fully validated system to monitor clinical features or activities in free living environments. Robust accuracy and validity metrics for some features have been reported, and wearable technology may be used in these cases with a degree of confidence. Utility and acceptability appears reasonable, although testing has largely been informal. Key recommendations include adopting a multi-disciplinary approach for standardising definitions, protocols and outcomes. Robust validation of developed algorithms and sensor-based metrics is required along with testing of utility. These advances are required before widespread clinical adoption of wearable technology can be realise

    Hands-feet wireless devices: Test-retest reliability and discriminant validity of motor measures in Parkinson's disease telemonitoring

    Get PDF
    Background Telemonitoring, a branch of telemedicine, involves the use of technological tools to remotely detect clinical data and evaluate patients. Telemonitoring of patients with Parkinson's disease (PD) should be performed using reliable and discriminant motor measures. Furthermore, the method of data collection and transmission, and the type of subjects suitable for telemonitoring must be well defined. Objective To analyze differences in patients with PD and healthy controls (HC) with the wearable inertial device SensHands-SensFeet (SH-SF), adopting a standardized acquisition mode, to verify if motor measures provided by SH-SF have a high discriminating capacity and high intraclass correlation coefficient (ICC). Methods Altogether, 64 patients with mild-to-moderate PD and 50 HC performed 14 standardized motor activities for assessing bradykinesia, postural and resting tremors, and gait parameters. SH-SF inertial devices were used to acquire movements and calculate objective motor measures of movement (total: 75). For each motor task, five or more biomechanical parameters were measured twice. The results were compared between patients with PD and HC. Results Fifty-eight objective motor measures significantly differed between patients with PD and HC; among these, 32 demonstrated relevant discrimination power (Cohen's d &gt; 0.8). The test-retest reliability was excellent in patients with PD (median ICC = 0.85 right limbs, 0.91 left limbs) and HC (median ICC = 0.78 right limbs, 0.82 left limbs). Conclusion In a supervised environment, the SH-SF device provides motor measures with good results in terms of reliability and discriminant ability. The reliability of SH-SF measurements should be evaluated in an unsupervised home setting in future studies

    Preliminary results of ON/OFF detection using an integrated system for Parkinson's disease monitoring

    Full text link
    This paper describes the experimental set up of a system composed by a set of wearable sensors devices for the recording of the motion signals and software algorithms for the signal analysis. This system is able to automatically detect and assess the severity of bradykinesia, tremor, dyskinesia and akinesia motor symptoms. Based on the assessment of the akinesia, the ON-OFF status of the patient is determined for each moment. The assessment performed through the automatic evaluation of the akinesia is compared with the status reported by the patients in their diaries. Preliminary results with a total recording period of 32 hours with two PD patients are presented, where a good correspondence (88.2 +/- 3.7 %) was observed. Best (93.7 por ciento) and worst (87 por ciento) correlation results are illustrated, together with the analysis of the automatic assessment of the akinesia symptom leading to the status determination. The results obtained are promising, and if confirmed with further data, this automatic assessment of PD motor symptoms will lead to a better adjustment of medication dosages and timing, cost savings and an improved quality of life of the patients
    corecore