12 research outputs found

    SURGE: Continuous Detection of Bursty Regions Over a Stream of Spatial Objects

    Full text link
    With the proliferation of mobile devices and location-based services, continuous generation of massive volume of streaming spatial objects (i.e., geo-tagged data) opens up new opportunities to address real-world problems by analyzing them. In this paper, we present a novel continuous bursty region detection problem that aims to continuously detect a bursty region of a given size in a specified geographical area from a stream of spatial objects. Specifically, a bursty region shows maximum spike in the number of spatial objects in a given time window. The problem is useful in addressing several real-world challenges such as surge pricing problem in online transportation and disease outbreak detection. To solve the problem, we propose an exact solution and two approximate solutions, and the approximation ratio is 1α4\frac{1-\alpha}{4} in terms of the burst score, where α\alpha is a parameter to control the burst score. We further extend these solutions to support detection of top-kk bursty regions. Extensive experiments with real-world data are conducted to demonstrate the efficiency and effectiveness of our solutions

    Retrieving Top-N Weighted Spatial k-cliques

    Full text link
    Spatial data analysis is a classic yet important topic because of its wide range of applications. Recently, as a spatial data analysis approach, a neighbor graph of a set P of spatial points has often been employed. This paper also considers a spatial neighbor graph and addresses a new problem, namely top-N weighted spatial k-clique retrieval. This problem searches for the N minimum weighted cliques consisting of k points in P, and it has important applications, such as community detection and co-location pattern mining. Recent spatial datasets have many points, and efficiently dealing with such big datasets is one of the main requirements of applications. A straightforward approach to solving our problem is to try to enumerate all k-cliques, which incurs O(nkk2) time. Since k ≥ 3, this approach cannot achieve the main requirement, so computing the result without enumerating unnecessary k-cliques is required. This paper achieves this challenging task and proposes a simple practically-efficient algorithm that returns the exact answer. We conduct experiments using two real spatial datasets consisting of million points, and the results show the efficiency of our algorithm, e.g., it can return the exact top-N result within 1 second when N ≤ 1000 and k ≤ 7.Taniguchi R., Amagata D., Hara T.. Retrieving Top-N Weighted Spatial k-cliques. Proceedings - 2022 IEEE International Conference on Big Data, Big Data 2022 , 4952 (2022); https://doi.org/10.1109/BigData55660.2022.10021071

    Efficient Retrieval of Top-k Weighted Spatial Triangles

    Full text link
    Due to the proliferation of location-based services and IoT devices, a lot of spatial points are being generated. Spatial data analysis is well known to be an important task. As spatial data analysis tools, graphs consisting of spatial points, where each point has edges to its nearby points and the weight of each edge is the distance between the corresponding points, have been receiving much attention. We focus on triangles (one of the simplest sub-graph patterns) in such graphs and address the problem of retrieving the top-k weighted spatial triangles. This problem has important real-life applications, e.g., group search, urban planning, and co-location pattern mining. However, this problem is computationally challenging, because the number of triangles in a graph is generally huge and enumerating all of them is not feasible. To solve this challenge, we propose an efficient algorithm that returns the exact result. Our experimental results on real datasets show the efficiency of our algorithm.This version of the contribution has been accepted for publication, after peer review (when applicable) but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/978-3-031-00123-9_17

    Approximate Reverse Top-k Spatial-Keyword Queries

    Full text link
    Location-based services are becoming more involved with our daily lives, so many works have considered efficiently retrieving useful objects from spatial-keyword databases. These works are promising on the user sides, but none of them considers the service provider sides. To gain profits and enrich recommendation lists, service providers conduct market analyses and want to know potential users who may be interested in their services. In this paper, to satisfy this requirement, we propose a new query, approximate reverse top-k spatial-keyword (ART) query. Given a set O of spatial-keyword objects, a set S of users (their locations and preferable keywords), a query object q, k, and an approximation ratio ϵ, an ART query retrieves such users that q is included in their approximate top-k results among O and q. A straightforward approach to processing this query is to run a top-k spatial-keyword search for each user in S. This is clearly expensive, as the number of users is generally large. We therefore propose PART, an efficient algorithm for ART query processing. In addition, we propose B-PART, which enables the processing of multiple ART queries in a batch. We conduct extensive experiments using real datasets, and the results demonstrate the efficiencies of our algorithms.Nishio S., Amagata D., Hara T.. Approximate Reverse Top-k Spatial-Keyword Queries. Proceedings - IEEE International Conference on Mobile Data Management 2023-July, 96 (2023); https://doi.org/10.1109/MDM58254.2023.00026

    Efficient Retrieval of Top-k Weighted Triangles on Static and Dynamic Spatial Data

    Get PDF
    Due to the proliferation of location-based services, spatial data analysis becomes more and more important. We consider graphs consisting of spatial points, where each point has edges to its nearby points and the weight of each edge is the distance between the corresponding points, as they have been receiving attention as spatial data analysis tools. We focus on triangles in such graphs and address the problem of retrieving the top- kk weighted spatial triangles. This problem is computationally challenging, because the number of triangles in a graph is generally huge and enumerating all of them is not feasible. To overcome this challenge, we propose an algorithm that returns the exact result efficiently. We moreover consider two dynamic data models: (i) fully dynamic data that allow arbitrary point insertions and deletions and (ii) streaming data in a sliding-window model. They often appear in location-based services. The results of our experiments on real datasets show the efficiency of our algorithms for static and dynamic data.Taniguchi R., Amagata D., Hara T.. Efficient Retrieval of Top-k Weighted Triangles on Static and Dynamic Spatial Data. IEEE Access 10, 55298 (2022); https://doi.org/10.1109/ACCESS.2022.3177620

    Fluid Stochastic Petri Nets: From Fluid Atoms in ILP Processor Pipelines to Fluid Atoms in P2P Streaming Networks

    Get PDF
    © 2012 Mitrevski and Kotevski, licensee InTech. This is an open access chapter distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Fluid Stochastic Petri Nets: From Fluid Atoms in ILP Processor Pipelines to Fluid Atoms in P2P Streaming Networ

    Identifying the most interactive object in spatial databases

    Full text link
    This paper investigates a new query, called an MIO query, that retrieves the Most Interactive Object in a given spatial dataset. Consider that an object consists of many spatial points. Given a distance threshold, we say that two objects interact with each other if they have a pair of points whose distance is within the threshold. An MIO query outputs the object that interacts with other objects the most, and it is useful for analytical applications e.g., neuroscience and trajectory databases. The MIO query processing problem is challenging: a nested loop algorithm is computationally inefficient and a theoretical algorithm is computationally efficient but incurs a quadratic space cost. Our solution efficiently processes MIO queries with a novel index, BIGrid (a hybrid index of compressed Bitset, Inverted list, and spatial Grid structures), with a practical memory cost. Furthermore, our solution is designed so that previous query results and multi-core environments can be exploited to accelerate query processing efficiency. Our experiments on synthetic and real datasets demonstrate the efficiency of our solution.Amagata D., Hara T.. Identifying the most interactive object in spatial databases. Proceedings - International Conference on Data Engineering 2019-April, 1286 (2019); https://doi.org/10.1109/ICDE.2019.00117

    Location- and keyword-based querying of geo-textual data: a survey

    Get PDF
    With the broad adoption of mobile devices, notably smartphones, keyword-based search for content has seen increasing use by mobile users, who are often interested in content related to their geographical location. We have also witnessed a proliferation of geo-textual content that encompasses both textual and geographical information. Examples include geo-tagged microblog posts, yellow pages, and web pages related to entities with physical locations. Over the past decade, substantial research has been conducted on integrating location into keyword-based querying of geo-textual content in settings where the underlying data is assumed to be either relatively static or is assumed to stream into a system that maintains a set of continuous queries. This paper offers a survey of both the research problems studied and the solutions proposed in these two settings. As such, it aims to offer the reader a first understanding of key concepts and techniques, and it serves as an “index” for researchers who are interested in exploring the concepts and techniques underlying proposed solutions to the querying of geo-textual data.Agency for Science, Technology and Research (A*STAR)Ministry of Education (MOE)Nanyang Technological UniversityThis research was supported in part by MOE Tier-2 Grant MOE2019-T2-2-181, MOE Tier-1 Grant RG114/19, an NTU ACE Grant, and the Singtel Cognitive and Artificial Intelligence Lab for Enterprises (SCALE@NTU), which is a collaboration between Singapore Telecommunications Limited (Singtel) and Nanyang Technological University (NTU) that is funded by the Singapore Government through the Industry Alignment Fund Industry Collaboration Projects Grant, and by the Innovation Fund Denmark centre, DIREC
    corecore