36 research outputs found

    Exploiting satellite SAR for archaeological prospection and heritage site protection

    Get PDF
    Optical and Synthetic Aperture Radar (SAR) remote sensing has a long history of use and reached a good level of maturity in archaeological and cultural heritage applications, yet further advances are viable through the exploitation of novel sensor data and imaging modes, big data and high-performance computing, advanced and automated analysis methods. This paper showcases the main research avenues in this field, with a focus on archaeological prospection and heritage site protection. Six demonstration use-cases with a wealth of heritage asset types (e.g. excavated and still buried archaeological features, standing monuments, natural reserves, burial mounds, paleo-channels) and respective scientific research objectives are presented: the Ostia-Portus area and the wider Province of Rome (Italy), the city of Wuhan and the Jiuzhaigou National Park (China), and the Siberian “Valley of the Kings” (Russia). Input data encompass both archive and newly tasked medium to very high-resolution imagery acquired over the last decade from satellite (e.g. Copernicus Sentinels and ESA Third Party Missions) and aerial (e.g. Unmanned Aerial Vehicles, UAV) platforms, as well as field-based evidence and ground truth, auxiliary topographic data, Digital Elevation Models (DEM), and monitoring data from geodetic campaigns and networks. The novel results achieved for the use-cases contribute to the discussion on the advantages and limitations of optical and SAR-based archaeological and heritage applications aimed to detect buried and sub-surface archaeological assets across rural and semi-vegetated landscapes, identify threats to cultural heritage assets due to ground instability and urban development in large metropolises, and monitor post-disaster impacts in natural reserves

    Spatiotemporal Evolution of Land Subsidence in the Beijing Plain 2003–2015 Using Persistent Scatterer Interferometry (PSI) with Multi-Source SAR Data

    Get PDF
    Land subsidence is one of the most important geological hazards in Beijing, China, and its scope and magnitude have been growing rapidly over the past few decades, mainly due to long-term groundwater withdrawal. Interferometric Synthetic Aperture Radar (InSAR) has been used to monitor the deformation in Beijing, but there is a lack of analysis of the long-term spatiotemporal evolution of land subsidence. This study focused on detecting and characterizing spatiotemporal changes in subsidence in the Beijing Plain by using Persistent Scatterer Interferometry (PSI) and geographic spatial analysis. Land subsidence during 2003–2015 was monitored by using ENVISAT ASAR (2003–2010), RADARSAT-2 (2011–2015) and TerraSAR-X (2010–2015) images, with results that are consistent with independent leveling measurements. The radar-based deformation velocity ranged from −136.9 to +15.2 mm/year during 2003–2010, and −149.4 to +8.9 mm/year during 2011–2015 relative to the reference point. The main subsidence areas include Chaoyang, Tongzhou, Shunyi and Changping districts, where seven subsidence bowls were observed between 2003 and 2015. Equal Fan Analysis Method (EFAM) shows that the maximum extensive direction was eastward, with a growing speed of 11.30 km2/year. Areas of differential subsidence were mostly located at the boundaries of the seven subsidence bowls, as indicated by the subsidence rate slope. Notably, the area of greatest subsidence was generally consistent with the patterns of groundwater decline in the Beijing Plain

    Inferring subsidence characteristics in Wuhan (China) through multitemporal InSAR and hydrogeological analysis

    Get PDF
    Wuhan (China) is facing severe consolidation subsidence of soft soil and karst collapse hazards. To quantitatively explore the extent and causes of land subsidence in Wuhan, we performed multitemporal interferometry (MTI) analysis using synthetic aperture radar (SAR) data from the TerraSAR-X satellite from 2013 to 2017 and the Sentinel-1A satellite from 2015 to 2017. MTI results reveal four major subsidence zones in Wuhan, namely, Hankou (exceeding −6 cm/yr), Xudong-Qingshan (−3 cm/yr), Baishazhou-Jiangdi (−3 cm/yr), and Jianshe-Yangluo (−2 cm/yr). Accuracy assessment using 106 levelling benchmarks and cross-validation between the two InSAR-based results indicate an overall root-mean-square error (RMSE) of 2.5 and 3.1 mm/yr, respectively. Geophysical and geological analyses suggest that among the four major subsiding zones, Hankou, Xudong-Qingshan, and Jianshe-Yangluo are located in non-karstic soft soil areas, where shallow groundwater (< 30 m) declines driven by engineering dewatering and industrial water depletion contribute directly to soft soil compaction. Subsidence in the Baishazhou-Jiangdi zone develops in the karst terrain with abundant underground caves and fissures, which are major natural factors for gradual subsidence and karst collapse. Spatial variation analysis of the geological conditions indicates that the stage of karst development plays the most important role in influencing kart subsidence, followed by municipal construction, proximity to major rivers, and overlying soil structure. Moreover, land subsidence in this zone is affected more via coupling effects from multiple factors. Risk zoning analysis integrating subsidence horizontal gradient, InSAR deformation rates, and municipal construction density show that the high-risk areas in Wuhan are mainly distributed in the Tianxingzhou and Baishazhou-Jiangdi zone, and generally spread along the metro lines. © 202

    Urban Deformation Monitoring using Persistent Scatterer Interferometry and SAR tomography

    Get PDF
    This book focuses on remote sensing for urban deformation monitoring. In particular, it highlights how deformation monitoring in urban areas can be carried out using Persistent Scatterer Interferometry (PSI) and Synthetic Aperture Radar (SAR) Tomography (TomoSAR). Several contributions show the capabilities of Interferometric SAR (InSAR) and PSI techniques for urban deformation monitoring. Some of them show the advantages of TomoSAR in un-mixing multiple scatterers for urban mapping and monitoring. This book is dedicated to the technical and scientific community interested in urban applications. It is useful for choosing the appropriate technique and gaining an assessment of the expected performance. The book will also be useful to researchers, as it provides information on the state-of-the-art and new trends in this fiel

    Analysis of landslide movements using interferometric synthetic aperture radar: A case study in Hunza-Nagar Valley, Pakistan

    Get PDF
    From a geological standpoint, northern Pakistan is one of the most active and unstable areas in the world. As a consequence, many massive landslides have occurred in the area in historical times that have destroyed infrastructure, blocked the Hunza River, and damaged the Karakoram Highway repeatedly. However, despite the high frequency of large magnitude landslide events, and the consequent damages, the entire area is largely understudied, mainly due to the difficult logistics and the large distances involved. This work is aimed at applying the potential use of Interferometric Synthetic Aperture Radar (InSAR) for landslide identification and investigation for the Hunza-Nagar Region. Sentinel-1 images covering a period of more than two years (February 2017-August 2019) were used and processed by adopting the small baseline subset (SBAS) method. The obtained deformation rate measured along the line of sight (VLOS) varies from -114 to 20 mm/year. The downslope velocity deformation rates (Vslope) range from 0 to -300 mm/year. The Vslope stability threshold for our study area was calculated to be -14 mm/year from the Vslope standard deviation. Four active landslides with Vslope exceeding 14 mm/year were recognizable and have been confirmed by field inspection. The identified landslides listed from the most active to least active are the Humarri, Mayoon, Khai, and Ghulmet landslides, respectively. VLOS exceeding 114 mm/year was observed in the Humarri landslide, which posed a threat of damming a lake on the Hispar River and was also a risk to the Humarri Village located below the landslide. The maximum mean deformation detected in the Ghulmet, andMayoon landslide was in the order of 30 mm/year and 20 mm/year, respectively. More importantly, it was found that in places, the slope deformation time series showed a patchy correlation with precipitation and seismic events in the area. This may indicate a complex, and possibly uncoupled, relationship between the two controlling agents promoting the deformation. However, the collective impact of the two factors is evident in the form of a continuously descending deformation curve and clearly indicates the ground distortion. The results indicate a potentially critical situation related to the high deformation rates measured at the Humarri landslide. On this specific slope, conditions leading to a possible catastrophic failure cannot be ruled out and should be a priority for the application of mitigation measures

    Long-Term Continuously Updated Deformation Time Series From Multisensor InSAR in Xi'an, China From 2007 to 2021

    Get PDF
    According to historical records, land subsidence has been occurring in Xi'an, China, since the 1960s, characterized by complex land subsidence patterns. This subsidence has the potential to cause serious societal and economic problems during the process of urbanization. Long-term, large-scale monitoring and dynamic high precision tracking of the evolution of surface deformation associated with geohazards is a prerequisite for effective prevention or advance warning of geological disasters. Synthetic aperture radar interferometry (InSAR), a satellite remote sensing technology, can facilitate such monitoring. Both currently operating and planned SAR satellites would provide extensive amounts of SAR data. In this article, we describe an approach for continuously updating long-term multisensor InSAR deformation time series using robust sequential least squares. It is successfully applied to near-real-time monitoring of the long-term evolution of surface deformation in Xi'an, China, from January 3, 2007 to February 12, 2021, using four SAR satellites: ALOS/PALSAR-1, TerraSAR-X, ALOS/PALSAR-2, and Sentinel-1A. In order to analyze deformation evolution, temporal independent component analysis was used to interpret deformation patterns. We found that land subsidence in Xi'an has slowed and even halted in some areas. However, large areas are uplifting, which presents a potential for geohazards. We conclude that the proposed approach using continuously updated deformation time series from multisensor InSAR can provide near-real-time deformation measurements, which are necessary for an early warning system

    ALOS-2/PALSAR-2 Calibration, Validation, Science and Applications

    Get PDF
    Twelve edited original papers on the latest and state-of-art results of topics ranging from calibration, validation, and science to a wide range of applications using ALOS-2/PALSAR-2. We hope you will find them useful for your future research

    Integration of InSAR time series analysis and water vapour correction for mapping postseismic deformation after the 2003 Bam (Iran) Earthquake

    Get PDF
    Atmospheric water-vapor effects represent a major limitation of interferometric synthetic aperture radar (InSAR) techniques, including InSAR time-series (TS) approaches (e.g., persistent or permanent scatterers and small-baseline subset). For the first time, this paper demonstrates the use of InSAR TS with precipitable water-vapor (InSAR TS + PWV) correction model for deformation mapping. We use MEdium Resolution Imaging Spectrometer (MERIS) near-infrafred (NIR) water-vapor data for InSAR atmospheric correction when they are available. For the dates when the NIR data are blocked by clouds, an atmospheric phase screen (APS) model has been developed to estimate atmospheric effects using partially water-vapor-corrected interferograms. Cross validation reveals that the estimated APS agreed with MERIS-derived line-of-sight path delays with a small standard deviation (0.3–0.5 cm) and a high correlation coefficient (0.84–0.98). This paper shows that a better TS of postseismic motion after the 2003 Bam (Iran) earthquake is achievable after reduction of water-vapor effects using the InSAR TS + PWV technique with coincident MERIS NIR water-vapor data

    Terrain mapping for the southwestern desert of Iraq using interferometry method from sentinel-1A images

    Get PDF
    Synthetic aperture radar Interferometry is a popular three-dimensional imaging technique for creating a Digital Elevation Model. Using traditional methods for creating DEMs and terrain mapping is one of the methods that require high cost and time-consuming, which has affected the creation and updating of terrain maps in Iraq, so this study aims to use the InSAR technology to generate DEM, which contributes to the creation of terrain maps. In this work, the synthetic aperture radar interferometry approach was used on the interference stack generated from a pair of Sentinel-1A images within the SNAP program to generate a DEM and a terrain map of the desert region in south-western Iraq. The elevations of the digital elevation model were compared with those of the RTK-GCPs points in the region of interest. The results obtained from this study are a terrain map with the contour lines generated from the digital elevation model created by the InSAR technique with an accuracy of 18 m, with the root mean square error of the DEM being 8.17. The outputs prove the effectiveness of InSAR technology in generating accurate DEM that contributes to creating terrain maps in less time and cost than traditional methods

    Evaluation of the Use of Sub-Pixel Offset Tracking Techniques to Monitor Landslides in Densely Vegetated Steeply Sloped Areas

    Get PDF
    Sub-Pixel Offset Tracking (sPOT) is applied to derive high-resolution centimetre-level landslide rates in the Three Gorges Region of China using TerraSAR-X Hi-resolution Spotlight (TSX HS) space-borne SAR images. These results contrast sharply with previous use of conventional differential Interferometric Synthetic Aperture Radar (DInSAR) techniques in areas with steep slopes, dense vegetation and large variability in water vapour which indicated around 12% phase coherent coverage. By contrast, sPOT is capable of measuring two dimensional deformation of large gradient over steeply sloped areas covered in dense vegetation. Previous applications of sPOT in this region relies on corner reflectors (CRs), (high coherence features) to obtain reliable measurements. However, CRs are expensive and difficult to install, especially in remote areas; and other potential high coherence features comparable with CRs are very few and outside the landslide boundary. The resultant sub-pixel level deformation field can be statistically analysed to yield multi-modal maps of deformation regions. This approach is shown to have a significant impact when compared with previous offset tracking measurements of landslide deformation, as it is demonstrated that sPOT can be applied even in densely vegetated terrain without relying on high-contrast surface features or requiring any de-noising process
    corecore