77 research outputs found

    Impact of Embedded Carbon Fiber Heating Panel on the Structural/Mechanical Performance of Roadway Pavement

    Get PDF
    INE/AUTC 12.3

    Three-phase five limb transformer responses to geomagnetically induced currents

    Get PDF
    Geomagnetically induced currents (GIC) are quasi-DC currents that result from space weather events arising from the sun. The sun ejects hot plasma in a concept termed ‘coronal mass ejections' which is directed towards the earth. This plasma interferes with the magnetic field of the magnetosphere and ionosphere, and the magnetic field is subsequently distorted. The distortions in these regions results in the variation of potential on the earth's surface and distortions in the earth's magnetic field. The potential difference between two points on the earth's surface leads to the flow of direct current (DC) of very low frequency in the range 0.001 ~ 0.1 Hz. Geomagnetically induced currents enter into the power system through grounded neutrals of power transformers. The potential effects of GIC on transformers are asymmetrical saturation, increased harmonics, noise, magnetization current, hot spot temperature rise and reactive power consumption. Transformer responses to GIC was investigated in this research focussing on a three-phase fivelimb (3p5L) transformer. Practical tests and simulations were conducted on 15 kVA, 380/380 V, and 3p5L transformers. The results were extended to large power transformers in FEM using equivalent circuit parameters to show the response of grid-level transformers. A review of literature on the thresholds of GIC that can initiate damage in power transformers was also done and it was noted that small magnitudes of DC may cause saturation and harmonics to be generated in power transformers which may lead to gradual failure of power transformers conducting GIC. Two distinct methods of measuring power were used to measure reactive power consumed by the transformers under DC injection. The conventional method and the General Power Theory were used and the results show that the conventional method of measuring power underestimates reactive power consumed by transformers under the influence of DC injections. It may mislead system planners in calculating the reactive power reserves required to mitigate the effects of GIC on the power system

    Space Science

    Get PDF
    The all-encompassing term Space Science was coined to describe all of the various fields of research in science: Physics and astronomy, aerospace engineering and spacecraft technologies, advanced computing and radio communication systems, that are concerned with the study of the Universe, and generally means either excluding the Earth or outside of the Earth's atmosphere. This special volume on Space Science was built throughout a scientifically rigorous selection process of each contributed chapter. Its structure drives the reader into a fascinating journey starting from the surface of our planet to reach a boundary where something lurks at the edge of the observable, light-emitting Universe, presenting four Sections running over a timely review on space exploration and the role being played by newcomer nations, an overview on Earth's early evolution during its long ancient ice age, a reanalysis of some aspects of satellites and planetary dynamics, to end up with intriguing discussions on recent advances in physics of cosmic microwave background radiation and cosmology

    Beach Nourishment: A 21st Century Review

    Get PDF
    Erosion is experienced by most coastlines worldwide, and it is usually attributed not only to sea level rise but also to the retention of sand in dams, the occupation of dry beaches by urbanized areas, the mining of sand as a building material for construction, and so on. Beach nourishment has evolved as the favored erosion-mitigation strategy in many areas of the world. The increasing number of people living on the coast, the safety of those people, and the high values of coastal properties are all factors that have made beach nourishment a cost-effective strategy for managing erosion in many locations. However, a new scenario of sand scarcity and environmental care has arisen in recent decades. There have been many different and interesting cases of various aspects of beach nourishment in recent years. The purpose of this invited Special Issue is to publish the most exciting experience and research with respect to this topic. Thus, novel techniques for designing, executing, and controlling these kinds of works as well as different case studies and their monitoring results and conclusions have been included, in order to present an updated state of the art for marine scientists, researchers, and engineers

    Ra: The Sun for Science and Humanity

    Get PDF
    To guide the development of the Ra Strategic Framework, we defined scientific and applications objectives. For our primary areas of scientific interest, we choose the corona, the solar wind, the Sun's effect on the Earth, and solar theory and model development. For secondary areas of scientific interest, we selected sunspots, the solar constant, the Sun's gravitational field, helioseismology and the galactic cosmic rays. We stress the importance of stereoscopic imaging, observations at high spatial, spectral, and temporal resolutions, as well as of long duration measurements. Further exploration of the Sun's polar regions is also important, as shown already by the Ulysses mission. From an applications perspective, we adopted three broad objectives that would derive complementary inputs for the Strategic Framework. These were to identify and investigate: possible application spin-offs from science missions, possible solar-terrestrial missions dedicated to a particular application, and possible future applications that require technology development. The Sun can be viewed as both a source of resources and of threats. Our principal applications focus was that of threat mitigation, by examining ways to improve solar threat monitoring and early warning systems. We compared these objectives to the mission objectives of past, current, and planned international solar missions. Past missions (1962-1980) seem to have been focused on improvement of scientific knowledge, using multiple instrument spacecraft. A ten year gap followed this period, during which the results from previous missions were analyzed and solar study programmes were prepared in international organizations. Current missions (1990-1996) focus on particular topics such as the corona, solar flares, and coronal mass ejections. In planned missions, Sun/Earth interactions and environmental effects of solar activity are becoming more important. The corona is the centre of interest of almost all planned missions. It seems that no international long-term strategy has yet been adopted. For these plans the number of necessary future missions can be reduced and the onboard instrumentation can be optimized by performing a comparative analysis. The study of the corona must be done from different observing locations, orbits closer to the Sun, and by different means. The Cluster mission replacement is in progress; however, if the replacement is not implemented, the ISTP programme will fade after 1998. Furthermore, the physics of the Sun's interior should be emphasized more in the Mid- and Far-Term programmes. Finally, more emphasis should be placed on monitoring space weather and forecasting Sun/Earth interactions

    HISTOLOGICAL STUDIES OF BREWERY SPENT GRAINS IN DIETARY PROTEIN FORMULATION IN DONRYU RATS

    Get PDF
    The increasing production of large tonnage of products in brewing industries continually generates lots of solid waste which includes spent grains, surplus yeast, malt sprout and cullet. The disposal of spent grains is often a problem and poses major health and environmental challenges, thereby making it imminently necessary to explore alternatives for its management. This paper focuses on investigating the effects of Brewery Spent Grain formulated diet on haematological, biochemical, histological and growth performance of Donryu rats. The rats were allocated into six dietary treatment groups and fed on a short-term study with diet containing graded levels of spent grains from 0, 3, 6, 9, 12 and 100% weight/weight. The outcome demonstrated that formulated diet had a positive effect on the growth performance of the rats up to levels of 6% inclusions, while the haematological and biochemical evaluation revealed that threshold limit should not exceed 9% of the grain. However, the histological study on the liver indicated a limit of 3% inclusion in feed without serious adverse effect. Thus invariably showing that blend between ranges 1-3% is appropriate for the utilization of the waste in human food without adverse effect on the liver organ. The economic advantage accruing from this waste conversion process not only solves problem of waste disposal but also handle issues of malnutrition in feeding ration

    Advanced Sensing, Fault Diagnostics, and Structural Health Management

    Get PDF
    Advanced sensing, fault diagnosis, and structural health management are important parts of the maintenance strategy of modern industries. With the advancement of science and technology, modern structural and mechanical systems are becoming more and more complex. Due to the continuous nature of operation and utilization, modern systems are heavily susceptible to faults. Hence, the operational reliability and safety of the systems can be greatly enhanced by using the multifaced strategy of designing novel sensing technologies and advanced intelligent algorithms and constructing modern data acquisition systems and structural health monitoring techniques. As a result, this research domain has been receiving a significant amount of attention from researchers in recent years. Furthermore, the research findings have been successfully applied in a wide range of fields such as aerospace, manufacturing, transportation and processes

    Studies in geophysics: The Earth's electrical environment

    Get PDF
    The Earth is electrified. Between the surface and the outer reaches of the atmosphere, there is a global circuit that is maintained by worldwide thunderstorm activity and by upper atmospheric dynamo processes. The highest voltages approach a billion volts and are generated within thunderclouds, where lightning is a visual display of the cloud's electrical nature. The largest currents in the circuit, approaching a million amperes, are associated with the aurora. Because there have been significant advances in understanding many of the component parts of the global electric circuit (lightning, cloud electrification, electrical processes in specific atmospheric regions, and telluric currents), a principal research challenge is to understand how these components interact to shape the global circuit. Increased basic understanding in this field has many potential practical applications, including lightning protection, the design of advanced aircraft and spacecraft, and improvements in weather prediction

    Physics-Based Modeling of Power System Components for the Evaluation of Low-Frequency Radiated Electromagnetic Fields

    Get PDF
    The low-frequency electromagnetic compatibility (EMC) is an increasingly important aspect in the design of practical systems to ensure the functional safety and reliability of complex products. The opportunities for using numerical techniques to predict and analyze system’s EMC are therefore of considerable interest in many industries. As the first phase of study, a proper model, including all the details of the component, was required. Therefore, the advances in EMC modeling were studied with classifying analytical and numerical models. The selected model was finite element (FE) modeling, coupled with the distributed network method, to generate the model of the converter’s components and obtain the frequency behavioral model of the converter. The method has the ability to reveal the behavior of parasitic elements and higher resonances, which have critical impacts in studying EMI problems. For the EMC and signature studies of the machine drives, the equivalent source modeling was studied. Considering the details of the multi-machine environment, including actual models, some innovation in equivalent source modeling was performed to decrease the simulation time dramatically. Several models were designed in this study and the voltage current cube model and wire model have the best result. The GA-based PSO method is used as the optimization process. Superposition and suppression of the fields in coupling the components were also studied and verified. The simulation time of the equivalent model is 80-100 times lower than the detailed model. All tests were verified experimentally. As the application of EMC and signature study, the fault diagnosis and condition monitoring of an induction motor drive was developed using radiated fields. In addition to experimental tests, the 3DFE analysis was coupled with circuit-based software to implement the incipient fault cases. The identification was implemented using ANN for seventy various faulty cases. The simulation results were verified experimentally. Finally, the identification of the types of power components were implemented. The results show that it is possible to identify the type of components, as well as the faulty components, by comparing the amplitudes of their stray field harmonics. The identification using the stray fields is nondestructive and can be used for the setups that cannot go offline and be dismantle
    corecore