23,231 research outputs found

    Monitoring Energy Consumption of Smartphones

    Full text link
    With the rapid development of new and innovative applications for mobile devices like smartphones, advances in battery technology have not kept pace with rapidly growing energy demands. Thus energy consumption has become a more and more important issue of mobile devices. To meet the requirements of saving energy, it is critical to monitor and analyze the energy consumption of applications on smartphones. For this purpose, we develop a smart energy monitoring system called SEMO for smartphones using Android operating system. It can profile mobile applications with battery usage information, which is vital for both developers and users.Comment: The 1st International Workshop on Sensing, Networking, and Computing with Smartphones (PhoneCom), IEEE, Dalian, China, Oct 19-22, 201

    Unit Testing of Energy Consumption of Software Libraries

    Get PDF
    International audienceThe development of energy-efficient software has become a key requirement for a large number of devices, from smartphones to data centers. However, measuring accurately this consumption is a major challenge that state-of-the-art approaches have tried to tackle with a limited success. While monitoring applications' consumption offers a clear insight on where the energy is being spent, it does not help in understanding how the energy is consumed. In this paper, we therefore introduce Jalen Unit, a software framework that infers the energy consumption model of software libraries from execution traces. This model can then be used to diagnose application code for detecting energy bugs, understanding energy distribution, establishing energy profiles and classifications, and comparing software libraries against their energy consumption

    An Android-Based Mechanism for Energy Efficient Localization Depending on Indoor/Outdoor Context

    Get PDF
    Today, there is widespread use of mobile applications that take advantage of a user\u27s location. Popular usages of location information include geotagging on social media websites, driver assistance and navigation, and querying nearby locations of interest. However, the average user may not realize the high energy costs of using location services (namely the GPS) or may not make smart decisions regarding when to enable or disable location services-for example, when indoors. As a result, a mechanism that can make these decisions on the user\u27s behalf can significantly improve a smartphone\u27s battery life. In this paper, we present an energy consumption analysis of the localization methods available on modern Android smartphones and propose the addition of an indoor localization mechanism that can be triggered depending on whether a user is detected to be indoors or outdoors. Based on our energy analysis and implementation of our proposed system, we provide experimental results-monitoring battery life over time-and show that an indoor localization method triggered by indoor or outdoor context can improve smartphone battery life and, potentially, location accuracy

    A Unified And Green Platform For Smartphone Sensing

    Get PDF
    Smartphones have become key communication and entertainment devices in people\u27s daily life. Sensors on (or attached to) smartphones can enable attractive sensing applications in different domains, including environmental monitoring, social networking, healthcare, transportation, etc. Most existing smartphone sensing systems are application-specific. How to leverage smartphones\u27 sensing capability to make them become unified information providers for various applications has not yet been fully explored. This dissertation presents a unified and green platform for smartphone sensing, which has the following desirable features: 1) It can support various smartphone sensing applications; 2) It is personalizable; 2) It is energy-efficient; and 3) It can be easily extended to support new sensors. Two novel sensing applications are built and integrated into this unified platform: SOR and LIPS. SOR is a smartphone Sensing based Objective Ranking (SOR) system. Different from a few subjective online review and recommendation systems (such as Yelp and TripAdvisor), SOR ranks a target place based on data collected via smartphone sensing. LIPS is a system that learns the LIfestyles of mobile users via smartPhone Sensing (LIPS). Combining both unsupervised and supervised learning, a hybrid scheme is proposed to characterize lifestyle and predict future activities of mobile users. This dissertation also studies how to use the cloud as a coordinator to assist smartphones for sensing collaboratively with the objective of reducing sensing energy consumption. A novel probabilistic model is built to address the GPS-less energy-efficient crowd sensing problem. Provably-good approximation algorithms are presented to enable smartphones to sense collaboratively without accurate locations such that sensing coverage requirements can be met with limited energy consumption

    MOSDEN: A Scalable Mobile Collaborative Platform for Opportunistic Sensing Applications

    Get PDF
    Mobile smartphones along with embedded sensors have become an efficient enabler for various mobile applications including opportunistic sensing. The hi-tech advances in smartphones are opening up a world of possibilities. This paper proposes a mobile collaborative platform called MOSDEN that enables and supports opportunistic sensing at run time. MOSDEN captures and shares sensor data across multiple apps, smartphones and users. MOSDEN supports the emerging trend of separating sensors from application-specific processing, storing and sharing. MOSDEN promotes reuse and re-purposing of sensor data hence reducing the efforts in developing novel opportunistic sensing applications. MOSDEN has been implemented on Android-based smartphones and tablets. Experimental evaluations validate the scalability and energy efficiency of MOSDEN and its suitability towards real world applications. The results of evaluation and lessons learned are presented and discussed in this paper.Comment: Accepted to be published in Transactions on Collaborative Computing, 2014. arXiv admin note: substantial text overlap with arXiv:1310.405

    Profiling Power Consumption on Mobile Devices

    Get PDF
    The proliferation of mobile devices, and the migration of the information access paradigm to mobile platforms, motivate studies of power consumption behaviors with the purpose of increasing the device battery life. The aim of this work is to profile the power consumption of a Samsung Galaxy I7500 and a Samsung Nexus S, in order to understand how such feature has evolved over the years. We performed two experiments: the first one measures consumption for a set of usage scenarios, which represent common daily user activities, while the second one analyzes a context-aware application with a known source code. The first experiment shows that the most recent device in terms of OS and hardware components shows significantly lower consumption than the least recent one. The second experiment shows that the impact of different configurations of the same application causes a different power consumption behavior on both smartphones. Our results show that hardware improvements and energy-aware software applications greatly impact the energy efficiency of mobile device
    • …
    corecore