313 research outputs found

    IMPLEMENTATION OF FUZZY MEMBERSHIP FUNCTION TO DETERMINNE AUTOMATIC WATERINNG TIME

    Get PDF
    Global warming impacted to agriculture, thereby affecting the world's food supply. UNICEF calls on every country to be able to meet its food needs independently. Indonesia, as an agricultural country, has the potential to meet food needs independently. One effort that can be made is to combine existing agricultural systems with technology through the application of IoT. In this research, it was applied to citrus plants using DHT11 temperature and air humidity sensors and soil moisture sensor YL69. Data processing uses a fuzzy algorithm approach, using two input variables, namely temperature and humidity variables and soil moisture variables. Meanwhile, the resulting output variable is the time for watering the plants. At the fuzzification stage, each variable is grouped into three memberships. For temperature and humidity variables are divided into hot, medium and cold membership. Soil moisture variables are divided into wet, medium and dry membership. And the time variables consists of short, medium and long time membership. In the defuzzification stage, it is calculated by calculating the center of area value for each graphic area resulting from the fuzzification stage. Furthermore, to test the system, the testing carried out resulted in an error value of 5.19 percent. Based on test and trial that be done, the result shows that average volume of water that flows every second when watering plants is 36.5 ml per second

    Ag-IoT for crop and environment monitoring: Past, present, and future

    Get PDF
    CONTEXT: Automated monitoring of the soil-plant-atmospheric continuum at a high spatiotemporal resolution is a key to transform the labor-intensive, experience-based decision making to an automatic, data-driven approach in agricultural production. Growers could make better management decisions by leveraging the real-time field data while researchers could utilize these data to answer key scientific questions. Traditionally, data collection in agricultural fields, which largely relies on human labor, can only generate limited numbers of data points with low resolution and accuracy. During the last two decades, crop monitoring has drastically evolved with the advancement of modern sensing technologies. Most importantly, the introduction of IoT (Internet of Things) into crop, soil, and microclimate sensing has transformed crop monitoring into a quantitative and data-driven work from a qualitative and experience-based task. OBJECTIVE: Ag-IoT systems enable a data pipeline for modern agriculture that includes data collection, transmission, storage, visualization, analysis, and decision-making. This review serves as a technical guide for Ag-IoT system design and development for crop, soil, and microclimate monitoring. METHODS: It highlighted Ag-IoT platforms presented in 115 academic publications between 2011 and 2021 worldwide. These publications were analyzed based on the types of sensors and actuators used, main control boards, types of farming, crops observed, communication technologies and protocols, power supplies, and energy storage used in Ag-IoT platforms

    Characterising the agriculture 4.0 landscape - Emerging trends, challenges and opportunities

    Get PDF
    ReviewInvestment in technological research is imperative to stimulate the development of sustainable solutions for the agricultural sector. Advances in Internet of Things, sensors and sensor networks, robotics, artificial intelligence, big data, cloud computing, etc. foster the transition towards the Agriculture 4.0 era. This fourth revolution is currently seen as a possible solution for improving agricultural growth, ensuring the future needs of the global population in a fair, resilient and sustainable way. In this context, this article aims at characterising the current Agriculture 4.0 landscape. Emerging trends were compiled using a semi-automated process by analysing relevant scientific publications published in the past ten years. Subsequently, a literature review focusing these trends was conducted, with a particular emphasis on their applications in real environments. From the results of the study, some challenges are discussed, as well as opportunities for future research. Finally, a high-level cloud-based IoT architecture is presented, serving as foundation for designing future smart agricultural systems. It is expected that this work will positively impact the research around Agriculture 4.0 systems, providing a clear characterisation of the concept along with guidelines to assist the actors in a successful transition towards the digitalisation of the sectorinfo:eu-repo/semantics/publishedVersio

    Low-cost Soil Moisture Sensors Based on Inductive Coils Tested on Different Sorts of Soils

    Full text link
    [EN] The use of precision agriculture and the Internet of Things has improved the efficiency of many cultures. Nevertheless, there are a few low-cost options to monitor soil moisture. Moreover, those options depend on the specific characteristics of the soil. In this paper, we attempt to find a sensor, based on mutual inductance, that could be used for more than one sort of soil. We study three prototypes, one of them with casing. The sensors are powered with a voltage of 10 peak to peak volts. One of the soils has a high content of organic matter and sand while the other is rich in sand and silt. The best prototype for the soil with high levels of organic matter has 10 turns on the powered coil and 5 on the induced coil. The best frequency for this sensor is 1340 kHz. For the soil with a significant quantity of silt, the best prototype has 80 turns on the powered coil and 40 on the induced coil. The frequency at which this sensor works best is 229 kHz, which happens to be its peak frequency. With those characteristics regressions lines with R2 values higher than 0.75 can be modeledThis work is partially found by the Conselleria de Educación, Cultura y Deporte with the Subvenciones para la contratación de personal investigador en fase postdoctoral, grant number APOSTD/2019/04, by European Union through the ERANETMED (Euromediterranean Cooperation through ERANET joint activities and beyond) project ERANETMED3-227 SMARTWATIR, and by the European Union with the Fondo Europeo Agrícola de Desarrollo Rural (FEADER) Europa invierte en zonas rurales, the MAPAMA, and Comunidad de Madrid with the IMIDRA, under the mark of the PDR-CM 2014-2020 project number PDR18-XEROCESPED.Parra-Boronat, M.; Parra-Boronat, L.; Lloret, J.; Mauri, PV.; Llinares Palacios, JV. (2019). Low-cost Soil Moisture Sensors Based on Inductive Coils Tested on Different Sorts of Soils. IEEE. 616-622. https://doi.org/10.1109/IOTSMS48152.2019.8939258S61662

    Computer Vision Based Machine Learning and Deep Learning Approaches for Identification of Nutrient Deficiency in Crops: A Survey

    Get PDF
    Agriculture is a significant industry that plays a major role in a country’s sustainable environment and economic development. The global population demands increased food production with minimal losses. Nutrient deficiency is one of the major and crucial factors influencing crop production significantly. Common techniques for determining crop nutrition status are the diagnosis of plant morphology, Enzymology, chemical effects, fertilization, etc. However, the above techniques are invasive and time-consuming or infeasible while considering varied production practices in different locations, environments and climatic conditions. Computer Vision is an area of Computer Science that deals with creating Artificial Intelligence based vision systems that can use image data, process, and analyze as humans perform. Early Detection of Crop Nutrient deficiencies favors the farmers to monitor the affected crops and plan for the manure or fertilizer application, which supports to regain of the crop’s efficiency for attaining its maximum yield. Modern computer vision systems rely on Machine Learning (ML), Remote sensing, Satellite imagery, unmanned aerial vehicles (UAVs), Internet of things (IoT) based sensor devices, and Deep Learning (DL) models that use algorithms to extract required features from data. The objective of this work is to provide an overview of recent research and identify the scope of computer vision-based technologies used for identifying crop nutrient content and deficiency, find research challenges in predicting nutrient imbalance in comparison with plant diseases that show certain similar characteristics, thereby to improve crop health and production

    Conditioning of Temperature and Soil Moisture in Chrysanthemum Cut Flowers Greenhouse Prototype based on Internet of Things (IoT)

    Get PDF
    Currently, cut chrysanthemum cultivation in a greenhouse is still using a conventional system. Temperature and soil moisture are the most important factors in the growth process. If the temperature and humidity of the soil are not conditioned, the roots will quickly rot and slow the growth process of chrysanthemums. Internet of Things is an integrated system with a data-based server that stores data in the cloud from sensors so that the system can be monitored remotely in real-time. Based on this, an integrated system was designed to make it easier for farmers to condition the temperature and humidity of the chrysanthemum flower soil. In temperature conditioning, if the temperature of cut chrysanthemum is detected <24 ℃ then the heater will be "on" by adjusting the fan rotation and vice versa. Meanwhile, soil moisture conditioning is carried out by distributing water if the detected soil moisture is <50%, then the water pump is in the "on" state. The data on the degree of temperature and the percent of soil moisture will be recorded into the cloud which will then be displayed in the form of graphs and history data on the webserver and Android. By using this system, it is found that the growth process of cut chrysanthemums can grow 7 days faster than the standard harvest time of 30 days

    Precision Agriculture Technology for Crop Farming

    Get PDF
    This book provides a review of precision agriculture technology development, followed by a presentation of the state-of-the-art and future requirements of precision agriculture technology. It presents different styles of precision agriculture technologies suitable for large scale mechanized farming; highly automated community-based mechanized production; and fully mechanized farming practices commonly seen in emerging economic regions. The book emphasizes the introduction of core technical features of sensing, data processing and interpretation technologies, crop modeling and production control theory, intelligent machinery and field robots for precision agriculture production

    Architecture and communication protocol to monitor and control water quality and irrigation in agricultural environments

    Full text link
    [ES] La introducción de soluciones tecnológicas en la agricultura permite reducir el uso de recursos y aumentar la producción de los cultivos. Además, la calidad del agua de regadío se puede monitorizar para asegurar la seguridad de los productos para el consumo humano. Sin embargo, la localización remota de la mayoría de los campos presenta un problema para proveer de cobertura inalámbrica a los nodos sensores y actuadores desplegados en los campos y los canales de agua para regadío. El trabajo presentado en esta tesis aborda el problema de habilitar la comunicación inalámbrica entre los dispositivos electrónicos desplegados para la monitorización de la calidad del agua y el campo a través de un protocolo de comunicación y arquitectura heterogéneos. La primera parte de esta tesis introduce los sistemas de agricultura de precisión (PA) y la importancia de la monitorización de la calidad del agua y el campo. Asimismo, las tecnologías que permiten la comunicación inalámbrica en sistemas PA y el uso de soluciones alternativas como el internet de las cosas bajo tierra (IoUT) y los vehículos aéreos no tripulados (UAV) se introducen también. Después, se realiza un análisis en profundidad del estado del arte respecto a los sensores para la monitorización del agua, el campo y las condiciones meteorológicas, así como sobre las tecnologías inalámbricas más empleadas en PA. Además, las tendencias actuales y los desafíos de los sistemas de internet de las cosas (IoT) para regadío, incluyendo las soluciones alternativas introducidas anteriormente, han sido abordados en detalle. A continuación, se presenta la arquitectura propuesta para el sistema, la cual incluye las áreas de interés para las actividades monitorización que incluye las áreas de los canales y el campo. A su vez, la descripción y los algoritmos de operación de los nodos sensores contemplados para cada área son proporcionados. El siguiente capítulo detalla el protocolo de comunicación heterogéneo propuesto, incluyendo los mensajes y alertas del sistema. Adicionalmente, se presenta una nueva topología de árbol para redes híbridas LoRa/WiFi multisalto. Las funcionalidades específicas adicionales concebidas para la arquitectura propuesta están descritas en el siguiente capítulo. Éstas incluyen algoritmos de agregación de datos para la topología propuesta, un esquema de las amenazas de seguridad para los sistemas PA, algoritmos de ahorro de energía y tolerancia a fallos, comunicación bajo tierra para IoUT y el uso de drones para adquisición de datos. Después, los resultados de las simulaciones para las soluciones propuestas anteriormente son presentados. Finalmente, se tratan las pruebas realizadas en entornos reales para el protocolo heterogéneo presentado, las diferentes estrategias de despliegue de los nodos empleados, el consumo energético y la función de cuantificación de fruta. Estas pruebas demuestran la validez de la arquitectura y protocolo de comunicación heterogéneos que se han propuesto.[CA] La introducció de solucions tecnològiques en l'agricultura permet reduir l'ús de recursos i augmentar la producció dels cultius. A més, la qualitat de l'aigua de regadiu es pot monitoritzar per assegurar la qualitat dels productes per al consum humà. No obstant això, la localització remota de la majoria dels camps presenta un problema per a proveir de cobertura sense fils als nodes sensors i actuadors desplegats als camps i els canals d'aigua per a regadiu. El treball presentat en aquesta tesi tracta el problema d'habilitar la comunicació sense fils entre els dispositius electrònics desplegats per a la monitorització de la qualitat de l'aigua i el camp a través d'un protocol de comunicació i arquitectura heterogenis. La primera part d'aquesta tesi introdueix els sistemes d'agricultura de precisió (PA) i la importància de la monitorització de la qualitat de l'aigua i el camp. Així mateix, també s'introdueixen les tecnologies que permeten la comunicació sense fils en sistemes PA i l'ús de solucions alternatives com l'Internet de les coses sota terra (IoUT) i els vehicles aeris no tripulats (UAV). Després, es realitza una anàlisi en profunditat de l'estat de l'art respecte als sensors per a la monitorització de l'aigua, el camp i les condicions meteorològiques, així com sobre les tecnologies sense fils més emprades en PA. S'aborden les tendències actuals i els reptes dels sistemes d'internet de les coses (IoT) per a regadiu, incloent les solucions alternatives introduïdes anteriorment. A continuació, es presenta l'arquitectura proposada per al sistema, on s'inclouen les àrees d'interès per a les activitats monitorització en els canals i el camp. Finalment, es proporciona la descripció i els algoritmes d'operació dels nodes sensors contemplats per a cada àrea. El següent capítol detalla el protocol de comunicació heterogeni proposat, així como el disseny del missatges i alertes que el sistema proposa. A més, es presenta una nova topologia d'arbre per a xarxes híbrides Lora/WiFi multi-salt. Les funcionalitats específiques addicionals concebudes per l'arquitectura proposada estan descrites en el següent capítol. Aquestes inclouen algoritmes d'agregació de dades per a la topologia proposta, un esquema de les alertes de seguretat per als sistemes PA, algoritmes d'estalvi d'energia i tolerància a fallades, comunicació per a IoUT i l'ús de drons per a adquisició de dades. Després, es presenten els resultats de les simulacions per a les solucions proposades. Finalment, es duen a terme les proves en entorns reals per al protocol heterogeni dissenyat. A més s'expliquen les diferents estratègies de desplegament dels nodes empleats, el consum energètic, així com, la funció de quantificació de fruita. Els resultats d'aquetes proves demostren la validesa de l'arquitectura i protocol de comunicació heterogenis propost en aquesta tesi.[EN] The introduction of technological solutions in agriculture allows reducing the use of resources and increasing the production of the crops. Furthermore, the quality of the water for irrigation can be monitored to ensure the safety of the produce for human consumption. However, the remote location of most fields presents a problem for providing wireless coverage to the sensing nodes and actuators deployed on the fields and the irrigation water canals. The work presented in this thesis addresses the problem of enabling wireless communication among the electronic devices deployed for water quality and field monitoring through a heterogeneous communication protocol and architecture. The first part of the dissertation introduces Precision Agriculture (PA) systems and the importance of water quality and field monitoring. In addition, the technologies that enable wireless communication in PA systems and the use of alternative solutions such as Internet of Underground Things (IoUT) and Unmanned Aerial Vehicles (UAV) are introduced as well. Then, an in-depth analysis on the state of the art regarding the sensors for water, field and meteorology monitoring and the most utilized wireless technologies in PA is performed. Furthermore, the current trends and challenges for Internet of Things (IoT) irrigation systems, including the alternate solutions previously introduced, have been discussed in detail. Then, the architecture for the proposed system is presented, which includes the areas of interest for the monitoring activities comprised of the canal and field areas. Moreover, the description and operation algorithms of the sensor nodes contemplated for each area is provided. The next chapter details the proposed heterogeneous communication protocol including the messages and alerts of the system. Additionally, a new tree topology for hybrid LoRa/WiFi multi-hop networks is presented. The specific additional functionalities intended for the proposed architecture are described in the following chapter. It includes data aggregation algorithms for the proposed topology, an overview on the security threats of PA systems, energy-saving and fault-tolerance algorithms, underground communication for IoUT, and the use of drones for data acquisition. Then, the simulation results for the solutions previously proposed are presented. Finally, the tests performed in real environments for the presented heterogeneous protocol, the different deployment strategies for the utilized nodes, the energy consumption, and a functionality for fruit quantification are discussed. These tests demonstrate the validity of the proposed heterogeneous architecture and communication protocol.García García, L. (2021). Architecture and communication protocol to monitor and control water quality and irrigation in agricultural environments [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17422
    corecore