5,372 research outputs found

    Potential climatic transitions with profound impact on Europe

    Get PDF
    We discuss potential transitions of six climatic subsystems with large-scale impact on Europe, sometimes denoted as tipping elements. These are the ice sheets on Greenland and West Antarctica, the Atlantic thermohaline circulation, Arctic sea ice, Alpine glaciers and northern hemisphere stratospheric ozone. Each system is represented by co-authors actively publishing in the corresponding field. For each subsystem we summarize the mechanism of a potential transition in a warmer climate along with its impact on Europe and assess the likelihood for such a transition based on published scientific literature. As a summary, the ‘tipping’ potential for each system is provided as a function of global mean temperature increase which required some subjective interpretation of scientific facts by the authors and should be considered as a snapshot of our current understanding. <br/

    Simulating ice core 10Be on the glacial–interglacial timescale

    Get PDF
    10Be ice core measurements are an important tool for paleoclimate research, e.g., allowing for the reconstruction of past solar activity or changes in the geomagnetic dipole field. However, especially on multi-millennial timescales, the share of production and climate-induced variations of respective 10Be ice core records is still up for debate. Here we present the first quantitative climatological model of the 10Be ice concentration up to the glacial–interglacial timescale. The model approach is composed of (i) a coarse resolution global atmospheric transport model and (ii) a local 10Be air–firn transfer model. Extensive global-scale observational data of short-lived radionuclides as well as new polar 10Be snow-pit measurements are used for model calibration and validation. Being specifically configured for 10Be in polar ice, this tool thus allows for a straightforward investigation of production- and non-production-related modulation of this nuclide. We find that the polar 10Be ice concentration does not immediately record the globally mixed cosmogenic production signal. Using geomagnetic modulation and revised Greenland snow accumulation rate changes as model input, we simulate the observed Greenland Summit (GRIP and GISP2) 10Be ice core records over the last 75 kyr (on the GICC05modelext timescale). We show that our basic model is capable of reproducing the largest portion of the observed 10Be changes. However, model–measurement differences exhibit multi-millennial trends (differences up to 87% in case of normalized to the Holocene records) which call for closer investigation. Focusing on the (12–37) b2k (before the year AD 2000) period, mean model–measurement differences of 30% cannot be attributed to production changes. However, unconsidered climate-induced changes could likely explain the model–measurement mismatch. In fact, the 10Be ice concentration is very sensitive to snow accumulation changes. Here the reconstructed Greenland Summit (GRIP) snow accumulation rate record would require revision of +28% to solely account for the (12–37) b2k model–measurement differences

    Radio-Echo Sounding Over Polar Ice Masses

    Get PDF
    Peer reviewedPublisher PD

    A Tropospheric Assessment of the ERA-40, NCEP, and JRA-25 Global Reanalyses in the Polar Regions

    Get PDF
    The reliability of the global reanalyses in the polar regions is investigated. The overview stems from an April 2006 Scientific Committee on Antarctic Research (SCAR) workshop on the performance of global reanalyses in high latitudes held at the British Antarctic Survey. Overall, the skill is much higher in the Arctic than the Antarctic, where the reanalyses are only reliable in the summer months prior to the modern satellite era. In the Antarctic, large circulation differences between the reanalyses are found primarily before 1979, when vast quantities of satellite sounding data started to be assimilated. Specifically for ERA-40, this data discontinuity creates a marked jump in Antarctic snow accumulation, especially at high elevations. In the Arctic, the largest differences are related to the reanalyses depiction of clouds and their associated radiation impacts; ERA-40 captures the cloud variability much better than NCEP1 and JRA-25, but the ERA-40 and JRA-25 clouds are too optically thin for shortwave radiation. To further contrast the reanalyses skill, cyclone tracking results are presented. In the Southern Hemisphere, cyclonic activity is markedly different between the reanalyses, where there are few matched cyclones prior to 1979. In comparison, only some of the weaker cyclones are not matched in the Northern Hemisphere from 1958-2001, again indicating the superior skill in this hemisphere. Although this manuscript focuses on deficiencies in the reanalyses, it is important to note that they are a powerful tool for climate studies in both polar regions when used with a recognition of their limitations

    State-of-the-art in studies of glacial isostatic adjustment for the British Isles: a literature review

    Get PDF
    Understanding the effects of glacial isostatic adjustment (GIA) of the British Isles is essential for the assessment of past and future sea-level trends. GIA has been extensively examined in the literature, employing different research methods and observational data types. Geological evidence from palaeo-shorelines and undisturbed sedimentary deposits has been used to reconstruct long-term relative sea-level change since the Last Glacial Maximum. This information derived from sea-level index points has been employed to inform empirical isobase models of the uplift in Scotland using trend surface and Gaussian trend surface analysis, as well as to calibrate more theory-driven GIA models that rely on Earth mantle rheology and ice sheet history. Furthermore, current short-term rates of GIA-induced crustal motion during the past few decades have been measured using different geodetic techniques, mainly continuous GPS (CGPS) and absolute gravimetry (AG). AG-measurements are generally employed to increase the accuracy of the CGPS estimates. Synthetic aperture radar interferometry (InSAR) looks promising as a relatively new technique to measure crustal uplift in the northern parts of Great Britain, where the GIA-induced vertical land deformation has its highest rate. This literature review provides an in-depth comparison and discussion of the development of these different research approaches

    CLIVAR Exchanges No. 54

    No full text
    • …
    corecore