186 research outputs found

    Unsupervised Learning for Monaural Source Separation Using Maximization–Minimization Algorithm with Time–Frequency Deconvolution

    Get PDF
    This paper presents an unsupervised learning algorithm for sparse nonnegative matrix factor time–frequency deconvolution with optimized fractional β -divergence. The β -divergence is a group of cost functions parametrized by a single parameter β . The Itakura–Saito divergence, Kullback–Leibler divergence and Least Square distance are special cases that correspond to β=0, 1, 2 , respectively. This paper presents a generalized algorithm that uses a flexible range of β that includes fractional values. It describes a maximization–minimization (MM) algorithm leading to the development of a fast convergence multiplicative update algorithm with guaranteed convergence. The proposed model operates in the time–frequency domain and decomposes an information-bearing matrix into two-dimensional deconvolution of factor matrices that represent the spectral dictionary and temporal codes. The deconvolution process has been optimized to yield sparse temporal codes through maximizing the likelihood of the observations. The paper also presents a method to estimate the fractional β value. The method is demonstrated on separating audio mixtures recorded from a single channel. The paper shows that the extraction of the spectral dictionary and temporal codes is significantly more efficient by using the proposed algorithm and subsequently leads to better source separation performance. Experimental tests and comparisons with other factorization methods have been conducted to verify its efficacy

    Single-channel source separation using non-negative matrix factorization

    Get PDF

    Statistical single channel source separation

    Get PDF
    PhD ThesisSingle channel source separation (SCSS) principally is one of the challenging fields in signal processing and has various significant applications. Unlike conventional SCSS methods which were based on linear instantaneous model, this research sets out to investigate the separation of single channel in two types of mixture which is nonlinear instantaneous mixture and linear convolutive mixture. For the nonlinear SCSS in instantaneous mixture, this research proposes a novel solution based on a two-stage process that consists of a Gaussianization transform which efficiently compensates for the nonlinear distortion follow by a maximum likelihood estimator to perform source separation. For linear SCSS in convolutive mixture, this research proposes new methods based on nonnegative matrix factorization which decomposes a mixture into two-dimensional convolution factor matrices that represent the spectral basis and temporal code. The proposed factorization considers the convolutive mixing in the decomposition by introducing frequency constrained parameters in the model. The method aims to separate the mixture into its constituent spectral-temporal source components while alleviating the effect of convolutive mixing. In addition, family of Itakura-Saito divergence has been developed as a cost function which brings the beneficial property of scale-invariant. Two new statistical techniques are proposed, namely, Expectation-Maximisation (EM) based algorithm framework which maximizes the log-likelihood of a mixed signals, and the maximum a posteriori approach which maximises the joint probability of a mixed signal using multiplicative update rules. To further improve this research work, a novel method that incorporates adaptive sparseness into the solution has been proposed to resolve the ambiguity and hence, improve the algorithm performance. The theoretical foundation of the proposed solutions has been rigorously developed and discussed in details. Results have concretely shown the effectiveness of all the proposed algorithms presented in this thesis in separating the mixed signals in single channel and have outperformed others available methods.Universiti Teknikal Malaysia Melaka(UTeM), Ministry of Higher Education of Malaysi

    Spectro-temporal post-smoothing in NMF based single-channel source separation

    Get PDF
    In this paper, we propose a new, simple, fast, and effective method to enforce temporal smoothness on nonnegative matrix factorization (NMF) solutions by post-smoothing the NMF decomposition results. In NMF based single-channel source separation, NMF is used to decompose the magnitude spectra of the mixed signal as a weighted linear combination of the trained basis vectors. The decomposition results are used to build spectral masks. To get temporal smoothness of the estimated sources, we deal with the spectral masks as 2-D images, and we pass the masks through a smoothing filter. The smoothing direction of the filter is the time direction of the spectral masks. The smoothed masks are used to find estimates for the source signals. Experimental results show that, using the smoothed masks give better separation results than enforcing temporal smoothness prior using regularized NMF

    Audio source separation for music in low-latency and high-latency scenarios

    Get PDF
    Aquesta tesi proposa mètodes per tractar les limitacions de les tècniques existents de separació de fonts musicals en condicions de baixa i alta latència. En primer lloc, ens centrem en els mètodes amb un baix cost computacional i baixa latència. Proposem l'ús de la regularització de Tikhonov com a mètode de descomposició de l'espectre en el context de baixa latència. El comparem amb les tècniques existents en tasques d'estimació i seguiment dels tons, que són passos crucials en molts mètodes de separació. A continuació utilitzem i avaluem el mètode de descomposició de l'espectre en tasques de separació de veu cantada, baix i percussió. En segon lloc, proposem diversos mètodes d'alta latència que milloren la separació de la veu cantada, gràcies al modelatge de components específics, com la respiració i les consonants. Finalment, explorem l'ús de correlacions temporals i anotacions manuals per millorar la separació dels instruments de percussió i dels senyals musicals polifònics complexes.Esta tesis propone métodos para tratar las limitaciones de las técnicas existentes de separación de fuentes musicales en condiciones de baja y alta latencia. En primer lugar, nos centramos en los métodos con un bajo coste computacional y baja latencia. Proponemos el uso de la regularización de Tikhonov como método de descomposición del espectro en el contexto de baja latencia. Lo comparamos con las técnicas existentes en tareas de estimación y seguimiento de los tonos, que son pasos cruciales en muchos métodos de separación. A continuación utilizamos y evaluamos el método de descomposición del espectro en tareas de separación de voz cantada, bajo y percusión. En segundo lugar, proponemos varios métodos de alta latencia que mejoran la separación de la voz cantada, gracias al modelado de componentes que a menudo no se toman en cuenta, como la respiración y las consonantes. Finalmente, exploramos el uso de correlaciones temporales y anotaciones manuales para mejorar la separación de los instrumentos de percusión y señales musicales polifónicas complejas.This thesis proposes specific methods to address the limitations of current music source separation methods in low-latency and high-latency scenarios. First, we focus on methods with low computational cost and low latency. We propose the use of Tikhonov regularization as a method for spectrum decomposition in the low-latency context. We compare it to existing techniques in pitch estimation and tracking tasks, crucial steps in many separation methods. We then use the proposed spectrum decomposition method in low-latency separation tasks targeting singing voice, bass and drums. Second, we propose several high-latency methods that improve the separation of singing voice by modeling components that are often not accounted for, such as breathiness and consonants. Finally, we explore using temporal correlations and human annotations to enhance the separation of drums and complex polyphonic music signals

    Direction of Arrival with One Microphone, a few LEGOs, and Non-Negative Matrix Factorization

    Get PDF
    Conventional approaches to sound source localization require at least two microphones. It is known, however, that people with unilateral hearing loss can also localize sounds. Monaural localization is possible thanks to the scattering by the head, though it hinges on learning the spectra of the various sources. We take inspiration from this human ability to propose algorithms for accurate sound source localization using a single microphone embedded in an arbitrary scattering structure. The structure modifies the frequency response of the microphone in a direction-dependent way giving each direction a signature. While knowing those signatures is sufficient to localize sources of white noise, localizing speech is much more challenging: it is an ill-posed inverse problem which we regularize by prior knowledge in the form of learned non-negative dictionaries. We demonstrate a monaural speech localization algorithm based on non-negative matrix factorization that does not depend on sophisticated, designed scatterers. In fact, we show experimental results with ad hoc scatterers made of LEGO bricks. Even with these rudimentary structures we can accurately localize arbitrary speakers; that is, we do not need to learn the dictionary for the particular speaker to be localized. Finally, we discuss multi-source localization and the related limitations of our approach.Comment: This article has been accepted for publication in IEEE/ACM Transactions on Audio, Speech, and Language processing (TASLP

    Single channel speech music separation using nonnegative matrix factorization and spectral masks

    Get PDF
    A single channel speech-music separation algorithm based on nonnegative matrix factorization (NMF) with spectral masks is proposed in this work. The proposed algorithm uses training data of speech and music signals with nonnegative matrix factorization followed by masking to separate the mixed signal. In the training stage, NMF uses the training data to train a set of basis vectors for each source. These bases are trained using NMF in the magnitude spectrum domain. After observing the mixed signal, NMF is used to decompose its magnitude spectra into a linear combination of the trained bases for both sources. The decomposition results are used to build a mask, which explains the contribution of each source in the mixed signal. Experimental results show that using masks after NMF improves the separation process even when calculating NMF with fewer iterations, which yields a faster separation process
    corecore