4,919 research outputs found

    Courcelle's Theorem - A Game-Theoretic Approach

    Get PDF
    Courcelle's Theorem states that every problem definable in Monadic Second-Order logic can be solved in linear time on structures of bounded treewidth, for example, by constructing a tree automaton that recognizes or rejects a tree decomposition of the structure. Existing, optimized software like the MONA tool can be used to build the corresponding tree automata, which for bounded treewidth are of constant size. Unfortunately, the constants involved can become extremely large - every quantifier alternation requires a power set construction for the automaton. Here, the required space can become a problem in practical applications. In this paper, we present a novel, direct approach based on model checking games, which avoids the expensive power set construction. Experiments with an implementation are promising, and we can solve problems on graphs where the automata-theoretic approach fails in practice.Comment: submitte

    On the Parameterized Intractability of Monadic Second-Order Logic

    Full text link
    One of Courcelle's celebrated results states that if C is a class of graphs of bounded tree-width, then model-checking for monadic second order logic (MSO_2) is fixed-parameter tractable (fpt) on C by linear time parameterized algorithms, where the parameter is the tree-width plus the size of the formula. An immediate question is whether this is best possible or whether the result can be extended to classes of unbounded tree-width. In this paper we show that in terms of tree-width, the theorem cannot be extended much further. More specifically, we show that if C is a class of graphs which is closed under colourings and satisfies certain constructibility conditions and is such that the tree-width of C is not bounded by \log^{84} n then MSO_2-model checking is not fpt unless SAT can be solved in sub-exponential time. If the tree-width of C is not poly-logarithmically bounded, then MSO_2-model checking is not fpt unless all problems in the polynomial-time hierarchy can be solved in sub-exponential time

    Decidability Results for the Boundedness Problem

    Full text link
    We prove decidability of the boundedness problem for monadic least fixed-point recursion based on positive monadic second-order (MSO) formulae over trees. Given an MSO-formula phi(X,x) that is positive in X, it is decidable whether the fixed-point recursion based on phi is spurious over the class of all trees in the sense that there is some uniform finite bound for the number of iterations phi takes to reach its least fixed point, uniformly across all trees. We also identify the exact complexity of this problem. The proof uses automata-theoretic techniques. This key result extends, by means of model-theoretic interpretations, to show decidability of the boundedness problem for MSO and guarded second-order logic (GSO) over the classes of structures of fixed finite tree-width. Further model-theoretic transfer arguments allow us to derive major known decidability results for boundedness for fragments of first-order logic as well as new ones

    Temporalized logics and automata for time granularity

    Full text link
    Suitable extensions of the monadic second-order theory of k successors have been proposed in the literature to capture the notion of time granularity. In this paper, we provide the monadic second-order theories of downward unbounded layered structures, which are infinitely refinable structures consisting of a coarsest domain and an infinite number of finer and finer domains, and of upward unbounded layered structures, which consist of a finest domain and an infinite number of coarser and coarser domains, with expressively complete and elementarily decidable temporal logic counterparts. We obtain such a result in two steps. First, we define a new class of combined automata, called temporalized automata, which can be proved to be the automata-theoretic counterpart of temporalized logics, and show that relevant properties, such as closure under Boolean operations, decidability, and expressive equivalence with respect to temporal logics, transfer from component automata to temporalized ones. Then, we exploit the correspondence between temporalized logics and automata to reduce the task of finding the temporal logic counterparts of the given theories of time granularity to the easier one of finding temporalized automata counterparts of them.Comment: Journal: Theory and Practice of Logic Programming Journal Acronym: TPLP Category: Paper for Special Issue (Verification and Computational Logic) Submitted: 18 March 2002, revised: 14 Januari 2003, accepted: 5 September 200

    On the Monadic Second-Order Transduction Hierarchy

    Full text link
    We compare classes of finite relational structures via monadic second-order transductions. More precisely, we study the preorder where we set C \subseteq K if, and only if, there exists a transduction {\tau} such that C\subseteq{\tau}(K). If we only consider classes of incidence structures we can completely describe the resulting hierarchy. It is linear of order type {\omega}+3. Each level can be characterised in terms of a suitable variant of tree-width. Canonical representatives of the various levels are: the class of all trees of height n, for each n \in N, of all paths, of all trees, and of all grids

    Logics for Unranked Trees: An Overview

    Get PDF
    Labeled unranked trees are used as a model of XML documents, and logical languages for them have been studied actively over the past several years. Such logics have different purposes: some are better suited for extracting data, some for expressing navigational properties, and some make it easy to relate complex properties of trees to the existence of tree automata for those properties. Furthermore, logics differ significantly in their model-checking properties, their automata models, and their behavior on ordered and unordered trees. In this paper we present a survey of logics for unranked trees

    Order Invariance on Decomposable Structures

    Full text link
    Order-invariant formulas access an ordering on a structure's universe, but the model relation is independent of the used ordering. Order invariance is frequently used for logic-based approaches in computer science. Order-invariant formulas capture unordered problems of complexity classes and they model the independence of the answer to a database query from low-level aspects of databases. We study the expressive power of order-invariant monadic second-order (MSO) and first-order (FO) logic on restricted classes of structures that admit certain forms of tree decompositions (not necessarily of bounded width). While order-invariant MSO is more expressive than MSO and, even, CMSO (MSO with modulo-counting predicates), we show that order-invariant MSO and CMSO are equally expressive on graphs of bounded tree width and on planar graphs. This extends an earlier result for trees due to Courcelle. Moreover, we show that all properties definable in order-invariant FO are also definable in MSO on these classes. These results are applications of a theorem that shows how to lift up definability results for order-invariant logics from the bags of a graph's tree decomposition to the graph itself.Comment: Accepted for LICS 201

    Monadic Second-Order Logic and Bisimulation Invariance for Coalgebras

    Get PDF
    Generalizing standard monadic second-order logic for Kripke models, we introduce monadic second-order logic interpreted over coalgebras for an arbitrary set functor. Similar to well-known results for monadic second-order logic over trees, we provide a translation of this logic into a class of automata, relative to the class of coalgebras that admit a tree-like supporting Kripke frame. We then consider invariance under behavioral equivalence of formulas; more in particular, we investigate whether the coalgebraic mu-calculus is the bisimulation-invariant fragment of monadic second-order logic. Building on recent results by the third author we show that in order to provide such a coalgebraic generalization of the Janin-Walukiewicz Theorem, it suffices to find what we call an adequate uniform construction for the functor. As applications of this result we obtain a partly new proof of the Janin-Walukiewicz Theorem, and bisimulation invariance results for the bag functor (graded modal logic) and all exponential polynomial functors. Finally, we consider in some detail the monotone neighborhood functor, which provides coalgebraic semantics for monotone modal logic. It turns out that there is no adequate uniform construction for this functor, whence the automata-theoretic approach towards bisimulation invariance does not apply directly. This problem can be overcome if we consider global bisimulations between neighborhood models: one of our main technical results provides a characterization of the monotone modal mu-calculus extended with the global modalities, as the fragment of monadic second-order logic for the monotone neighborhood functor that is invariant for global bisimulations

    Advances and applications of automata on words and trees : abstracts collection

    Get PDF
    From 12.12.2010 to 17.12.2010, the Dagstuhl Seminar 10501 "Advances and Applications of Automata on Words and Trees" was held in Schloss Dagstuhl - Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available
    • …
    corecore