120 research outputs found

    Logics for Unranked Trees: An Overview

    Get PDF
    Labeled unranked trees are used as a model of XML documents, and logical languages for them have been studied actively over the past several years. Such logics have different purposes: some are better suited for extracting data, some for expressing navigational properties, and some make it easy to relate complex properties of trees to the existence of tree automata for those properties. Furthermore, logics differ significantly in their model-checking properties, their automata models, and their behavior on ordered and unordered trees. In this paper we present a survey of logics for unranked trees

    Logic-based Web Information Extraction

    Get PDF

    Queries with Guarded Negation (full version)

    Full text link
    A well-established and fundamental insight in database theory is that negation (also known as complementation) tends to make queries difficult to process and difficult to reason about. Many basic problems are decidable and admit practical algorithms in the case of unions of conjunctive queries, but become difficult or even undecidable when queries are allowed to contain negation. Inspired by recent results in finite model theory, we consider a restricted form of negation, guarded negation. We introduce a fragment of SQL, called GN-SQL, as well as a fragment of Datalog with stratified negation, called GN-Datalog, that allow only guarded negation, and we show that these query languages are computationally well behaved, in terms of testing query containment, query evaluation, open-world query answering, and boundedness. GN-SQL and GN-Datalog subsume a number of well known query languages and constraint languages, such as unions of conjunctive queries, monadic Datalog, and frontier-guarded tgds. In addition, an analysis of standard benchmark workloads shows that most usage of negation in SQL in practice is guarded negation

    Logic, Languages, and Rules for Web Data Extraction and Reasoning over Data

    Get PDF
    This paper gives a short overview of specific logical approaches to data extraction, data management, and reasoning about data. In particular, we survey theoretical results and formalisms that have been obtained and used in the context of the Lixto Project at TU Wien, the DIADEM project at the University of Oxford, and the VADA project, which is currently being carried out jointly by the universities of Edinburgh, Manchester, and Oxford. We start with a formal approach to web data extraction rooted in monadic second order logic and monadic Datalog, which gave rise to the Lixto data extraction system. We then present some complexity results for monadic Datalog over trees and for XPath query evaluation. We further argue that for value creation and for ontological reasoning over data, we need existential quantifiers (or Skolem terms) in rule heads, and introduce the Datalog± family. We give an overview of important members of this family and discuss related complexity issues

    Monadic Datalog Containment on Trees

    Get PDF
    We show that the query containment problem for monadic datalog on finite unranked labeled trees can be solved in 2-fold exponential time when (a) considering unordered trees using the axes child and descendant, and when (b) considering ordered trees using the axes firstchild, nextsibling, child, and descendant. When omitting the descendant-axis, we obtain that in both cases the problem is EXPTIME-complete.Comment: This article is the full version of an article published in the proccedings of the 8th Alberto Mendelzon Workshop (AMW 2014

    Monadic Queries over Tree-Structured Data

    Get PDF
    Monadic query languages over trees currently receive considerable interest in the database community, as the problem of selecting nodes from a tree is the most basic and widespread database query problem in the context of XML. Partly a survey of recent work done by the authors and their group on logical query languages for this problem and their expressiveness, this paper provides a number of new results related to the complexity of such languages over so-called axis relations (such as "child" or "descendant") which are motivated by their presence in the XPath standard or by their utility for data extraction (wrapping)
    • 

    corecore