941 research outputs found

    Long- and short-time asymptotics of the first-passage time of the Ornstein-Uhlenbeck and other mean-reverting processes

    Get PDF
    The first-passage problem of the Ornstein-Uhlenbeck process to a boundary is a long-standing problem with no known closed-form solution except in specific cases. Taking this as a starting-point, and extending to a general mean-reverting process, we investigate the long- and short-time asymptotics using a combination of Hopf-Cole and Laplace transform techniques. As a result we are able to give a single formula that is correct in both limits, as well as being exact in certain special cases. We demonstrate the results using a variety of other models

    Efficient Monte Carlo methods for simulating diffusion-reaction processes in complex systems

    Full text link
    We briefly review the principles, mathematical bases, numerical shortcuts and applications of fast random walk (FRW) algorithms. This Monte Carlo technique allows one to simulate individual trajectories of diffusing particles in order to study various probabilistic characteristics (harmonic measure, first passage/exit time distribution, reaction rates, search times and strategies, etc.) and to solve the related partial differential equations. The adaptive character and flexibility of FRWs make them particularly efficient for simulating diffusive processes in porous, multiscale, heterogeneous, disordered or irregularly-shaped media
    • …
    corecore