36,740 research outputs found

    Dimensionality Reduction for k-Means Clustering and Low Rank Approximation

    Full text link
    We show how to approximate a data matrix A\mathbf{A} with a much smaller sketch A~\mathbf{\tilde A} that can be used to solve a general class of constrained k-rank approximation problems to within (1+ϵ)(1+\epsilon) error. Importantly, this class of problems includes kk-means clustering and unconstrained low rank approximation (i.e. principal component analysis). By reducing data points to just O(k)O(k) dimensions, our methods generically accelerate any exact, approximate, or heuristic algorithm for these ubiquitous problems. For kk-means dimensionality reduction, we provide (1+ϵ)(1+\epsilon) relative error results for many common sketching techniques, including random row projection, column selection, and approximate SVD. For approximate principal component analysis, we give a simple alternative to known algorithms that has applications in the streaming setting. Additionally, we extend recent work on column-based matrix reconstruction, giving column subsets that not only `cover' a good subspace for \bv{A}, but can be used directly to compute this subspace. Finally, for kk-means clustering, we show how to achieve a (9+ϵ)(9+\epsilon) approximation by Johnson-Lindenstrauss projecting data points to just O(logk/ϵ2)O(\log k/\epsilon^2) dimensions. This gives the first result that leverages the specific structure of kk-means to achieve dimension independent of input size and sublinear in kk

    Differentially Private Mixture of Generative Neural Networks

    Get PDF
    Generative models are used in a wide range of applications building on large amounts of contextually rich information. Due to possible privacy violations of the individuals whose data is used to train these models, however, publishing or sharing generative models is not always viable. In this paper, we present a novel technique for privately releasing generative models and entire high-dimensional datasets produced by these models. We model the generator distribution of the training data with a mixture of kk generative neural networks. These are trained together and collectively learn the generator distribution of a dataset. Data is divided into kk clusters, using a novel differentially private kernel kk-means, then each cluster is given to separate generative neural networks, such as Restricted Boltzmann Machines or Variational Autoencoders, which are trained only on their own cluster using differentially private gradient descent. We evaluate our approach using the MNIST dataset, as well as call detail records and transit datasets, showing that it produces realistic synthetic samples, which can also be used to accurately compute arbitrary number of counting queries.Comment: A shorter version of this paper appeared at the 17th IEEE International Conference on Data Mining (ICDM 2017). This is the full version, published in IEEE Transactions on Knowledge and Data Engineering (TKDE

    Relaxation dynamics of maximally clustered networks

    Get PDF
    We study the relaxation dynamics of fully clustered networks (maximal number of triangles) to an unclustered state under two different edge dynamics---the double-edge swap, corresponding to degree-preserving randomization of the configuration model, and single edge replacement, corresponding to full randomization of the Erd\H{o}s--R\'enyi random graph. We derive expressions for the time evolution of the degree distribution, edge multiplicity distribution and clustering coefficient. We show that under both dynamics networks undergo a continuous phase transition in which a giant connected component is formed. We calculate the position of the phase transition analytically using the Erd\H{o}s--R\'enyi phenomenology
    corecore