25,882 research outputs found

    Moment-Matching Polynomials

    Full text link
    We give a new framework for proving the existence of low-degree, polynomial approximators for Boolean functions with respect to broad classes of non-product distributions. Our proofs use techniques related to the classical moment problem and deviate significantly from known Fourier-based methods, which require the underlying distribution to have some product structure. Our main application is the first polynomial-time algorithm for agnostically learning any function of a constant number of halfspaces with respect to any log-concave distribution (for any constant accuracy parameter). This result was not known even for the case of learning the intersection of two halfspaces without noise. Additionally, we show that in the "smoothed-analysis" setting, the above results hold with respect to distributions that have sub-exponential tails, a property satisfied by many natural and well-studied distributions in machine learning. Given that our algorithms can be implemented using Support Vector Machines (SVMs) with a polynomial kernel, these results give a rigorous theoretical explanation as to why many kernel methods work so well in practice

    The combinatorics of associated Hermite polynomials

    Get PDF
    We develop a combinatorial model of the associated Hermite polynomials and their moments, and prove their orthogonality with a sign-reversing involution. We find combinatorial interpretations of the moments as complete matchings, connected complete matchings, oscillating tableaux, and rooted maps and show weight-preserving bijections between these objects. Several identities, linearization formulas, the moment generating function, and a second combinatorial model are also derived.Comment: [v1]: 18 pages, 16 figures; presented at FPSAC 2007 [v2]: Some minor errors fixed (thanks Bill Chen, Jang Soo Kim) and text rearranged and cleaned up; no real content changes [v3]: fixed typos, to appear in European J. Combinatoric

    Higher order matching polynomials and d-orthogonality

    Get PDF
    We show combinatorially that the higher-order matching polynomials of several families of graphs are d-orthogonal polynomials. The matching polynomial of a graph is a generating function for coverings of a graph by disjoint edges; the higher-order matching polynomial corresponds to coverings by paths. Several families of classical orthogonal polynomials -- the Chebyshev, Hermite, and Laguerre polynomials -- can be interpreted as matching polynomials of paths, cycles, complete graphs, and complete bipartite graphs. The notion of d-orthogonality is a generalization of the usual idea of orthogonality for polynomials and we use sign-reversing involutions to show that the higher-order Chebyshev (first and second kinds), Hermite, and Laguerre polynomials are d-orthogonal. We also investigate the moments and find generating functions of those polynomials.Comment: 21 pages, many TikZ figures; v2: minor clarifications and addition
    • …
    corecore