1,019 research outputs found

    Multi-stage Wireless Signal Identification for Blind Interception Receiver Design

    Get PDF
    Protection of critical wireless infrastructure from malicious attacks has become increasingly important in recent years, with the widespread deployment of various wireless technologies and dramatic growth in user populations. This brings substantial technical challenges to the interception receiver design to sense and identify various wireless signals using different transmission technologies. The key requirements for the receiver design include estimation of the signal parameters/features and classification of the modulation scheme. With the proper identification results, corresponding signal interception techniques can be developed, which can be further employed to enhance the network behaviour analysis and intrusion detection. In detail, the initial stage of the blind interception receiver design is to identify the signal parameters. In the thesis, two low-complexity approaches are provided to realize the parameter estimation, which are based on iterative cyclostationary analysis and envelope spectrum estimation, respectively. With the estimated signal parameters, automatic modulation classification (AMC) is performed to automatically identify the modulation schemes of the transmitted signals. A novel approach is presented based on Gaussian Mixture Models (GMM) in Chapter 4. The approach is capable of mitigating the negative effect from multipath fading channel. To validate the proposed design, the performance is evaluated under an experimental propagation environment. The results show that the proposed design is capable of adapting blind parameter estimation, realize timing and frequency synchronization and classifying the modulation schemes with improved performances

    機械学習を用いたコグニティブ無線における変調方式識別に関する研究

    Get PDF
    The current spectrum allocation cannot satisfy the demand for future wireless communications, which prompts extensive studies in search of feasible solutions for the spectrum scarcity. The burden in terms of the spectral efficiency on the radio frequency terminal is intended to be small by cognitive radio (CR) systems that prefer low power transmission, changeable carrier frequencies, and diverse modulation schemes. However, the recent surge in the application of the CR has been accompanied by an indispensable component: the spectrum sensing, to avoid interference towards the primary user. This requirement leads to a complex strategy for sensing and transmission and an increased demand for signal processing at the secondary user. However, the performance of the spectrum sensing can be extended by a robust modulation classification (MC) scheme to distinguish between a primary user and a secondary user along with the interference identification. For instance, the underlying paradigm that enables a concurrent transmission of the primary and secondary links may need a precise measure of the interference that the secondary users cause to the primary users. An adjustment to the transmission power should be made, if there is a change in the modulation of the primary users, implying a noise oor excess at the primary user location; else, the primary user will be subject to interference and a collision may occur.Alternatively, the interweave paradigm that progresses the spectrum efficiency by reusing the allocated spectrum over a temporary space, requires a classification of the intercepted signal into primary and secondary systems. Moreover, a distinction between noise and interference can be accomplished by modulation classification, if spectrum sensing is impossible. Therefore, modulation classification has been a fruitful area of study for over three decades.In this thesis, the modulation classification algorithms using machine learning are investigated while new methods are proposed. Firstly, a supervised machine learning based modulation classification algorithm is proposed. The higher-order cumulants are selected as features, due to its robustness to noise. Stacked denoising autoencoders,which is an extended edition of the neural network, is chosen as the classifier. On one hand stacked pre-train overcomes the shortcoming of local optimization, on the other, denoising function further enhances the anti-noise performance. The performance of this method is compared with the conventional methods in terms of the classification accuracy and execution speed. Secondly, an unsupervised machine learning based modulation classification algorithm is proposed.The features from time-frequency distribution are extracted. Density-based spatial clustering of applications with noise (DBSCAN) is used as the classifier because it is impossible to decide the number of clusters in advance. The simulation reveals that this method has higher classification accuracy than the conventional methods. Moreover, the training phase is unnecessary for this method. Therefore, it has higher workability then supervised method. Finally, the advantages and dis-advantages of them are summarized.For the future work, algorithm optimization is still a challenging task, because the computation capability of hardware is limited. On one hand, for the supervised machine learning, GPU computation is a potential solution for supervised machine learning, to reduce the execution cost. Altering the modulation pool, the network structure has to be redesigned as well. On the other hand, for the unsupervised machine learning, that shifting the symbols to carrier frequency consumes extra computing resources.電気通信大学201

    A Low-memory Spectral-correlation Analyzer For Digital Qam-srrc Waveforms

    Get PDF
    Cyclostationary signal processing (CSP) provides the ability to estimate received waveforms’ statistical features blindly. Quadrature amplitude modulated (QAM) waveforms, when filtered by the square-root-raised cosine (SRRC) pulse shape function, have cyclic features that CSP can exploit to detect waveform parameters such as symbol rate (SR) and center frequency (CF). The estimation of these SR-CF pairs enables a cognitive radio (CR) to perform spectrum sensing techniques such as spectrum sharing and interference mitigation. Here, we investigate a field-programmable gate array (FPGA) application of a blind symbol rate-center frequency estimator. First, this study provides a background on the theory behind the cyclic spectral density function (CSD), spectral correlation analyzers (SCA), and spectrum sensing. Following this is a discussion on the motivation for CubeSat spectrum sensing. An SCA implementation for low-memory devices, such as FPGA-based CubeSat, is then describes. The paper concludes by reporting the performance characteristics of the newly developed streaming-based SCA

    Advanced Statistical Signal Processing Methods in Sensing, Detection, and Estimation for Communication Applications

    Get PDF
    The applications of wireless communications and digital signal processing have dramatically changed the way we live, work, and learn over decades. The requirement of higher throughput and ubiquitous connectivity for wireless communication systems has become prevalent nowadays. Signal sensing, detection and estimation have been prevalent in signal processing and communications for many years. The relevant studies deal with the processing of information-bearing signals for the purpose of information extraction. Nevertheless, new robust and efficient signal sensing, detection and estimation techniques are still in demand since there emerge more and more practical applications which rely on them. In this dissertation work, we proposed several novel signal sensing, detection and estimation schemes for wireless communications applications, such as spectrum sensing, symbol-detection/channel-estimation, and encoder identification. The associated theories and practice in robustness, computational complexity, and overall system performance evaluation are also provided

    Blind Estimation of OFDM System Parameters for Automatic Signal Identification

    Get PDF
    Orthogonal frequency division multiplexing (OFDM) has gained worldwide popular­ ity in broadband wireless communications recently due to its high spectral efficiency and robust performance in multipath fading channels. A growing trend of smart receivers which can support and adapt to multiple OFDM based standards auto­ matically brings the necessity of identifying different standards by estimating OFDM system parameters without a priori information. Consequently, blind estimation and identification of OFDM system parameters has received considerable research atten­ tions. Many techniques have been developed for blind estimation of various OFDM parameters, whereas estimation of the sampling frequency is often ignored. Further­ more, the estimated sampling frequency of an OFDM signal has to be very accurate for data recovery due to the high sensitivity of OFDM signals to sampling clock offset. To address the aforementioned problems, we propose a two-step cyclostation- arity based algorithm with low computational complexity to precisely estimate the sampling frequency of a received oversampled OFDM signal. With this estimated sampling frequency and oversampling ratio, other OFDM system parameters, i.e., the number of subcarriers, symbol duration and cyclic prefix (CP) length can be es­ timated based on the cyclic property from CP sequentially. In addition, modulation scheme used in the OFDM can be classified based on the higher-order statistics (HOS) of the frequency domain OFDM signal. All the proposed algorithms are verified by a lab testing system including a vec­ tor signal generator, a spectrum analyzer and a high speed digitizer. The evaluation results confirm the high precision and efficacy of the proposed algorithm in realistic scenarios

    A Real Time Radio Spectrum Scanning Technique Based On The Bayesian Model And Its Comparison With The Frequentist Technique

    Get PDF
    The proliferation of mobile devices led to an exponential demand for wireless radio spectrum resources. The current fixed spectrum assignment has caused some portions of the radio spectrum to be heavily used whereas others to be scarcely used. This has resulted in underutilization of spectrum resources, and, hence has demanded the need for solutions to address the spectrum scarcity problem. Cognitive radio was proposed as one of the solutions. One of the techniques involved in cognitive radio is the dynamic spectrum access technique. This technique requires the identification of free channels in order to allow secondary users to exploit the spectrum resources. The process of identification of free channels is known as radio spectrum scanning, which is performed by sensing a particular channel in the radio spectrum to determine the presence or absence of a signal. In most of existing studies, the frequentist technique using energy detection with fixed threshold was used to scan the radio spectrum. However, this method comes with a major drawbacks. First, energy detection is unable to distinguish between signals and noise and suffer for high false detection rates. Second, energy detection has high false alarm probability. Finally, frequentist techniques are subject to uncertainty and do not provide real time monitoring/sensing. Therefore, the goal of this thesis is to develop a more efficient scanning technique that deals with uncertainty and scans the radio spectrum in real time and determines its occupancy levels. An enhanced spectrum scanning approach is developed using an efficient spectrum sensing technique: an uncertainty handling Bayesian model along with a Bayesian inferential approach. Two Bayesian models are developed: 1) a simplified model, and 2) an improved model to incorporate the Bayesian inferential approach to estimate the spectrum occupancy level. The performance evaluation of the proposed technique has been done using simulations as well as real experiments. For this purpose, two metrics were used: probability of detection and probability of false alarm. Furthermore, the efficiency of the proposed technique was compared to the efficiency of the frequentist technique, which uses only a spectrum sensing technique to identify the occupancy of the spectrum channels. As expected significant improvements in the spectrum occupancy measurements have been observed with the proposed Bayesian inference method
    corecore