6,203 research outputs found

    Convex Hulls of Algebraic Sets

    Full text link
    This article describes a method to compute successive convex approximations of the convex hull of a set of points in R^n that are the solutions to a system of polynomial equations over the reals. The method relies on sums of squares of polynomials and the dual theory of moment matrices. The main feature of the technique is that all computations are done modulo the ideal generated by the polynomials defining the set to the convexified. This work was motivated by questions raised by Lov\'asz concerning extensions of the theta body of a graph to arbitrary real algebraic varieties, and hence the relaxations described here are called theta bodies. The convexification process can be seen as an incarnation of Lasserre's hierarchy of convex relaxations of a semialgebraic set in R^n. When the defining ideal is real radical the results become especially nice. We provide several examples of the method and discuss convergence issues. Finite convergence, especially after the first step of the method, can be described explicitly for finite point sets.Comment: This article was written for the "Handbook of Semidefinite, Cone and Polynomial Optimization: Theory, Algorithms, Software and Applications

    Tracial algebras and an embedding theorem

    Get PDF
    We prove that every positive trace on a countably generated *-algebra can be approximated by positive traces on algebras of generic matrices. This implies that every countably generated tracial *-algebra can be embedded into a metric ultraproduct of generic matrix algebras. As a particular consequence, every finite von Neumann algebra with separable pre-dual can be embedded into an ultraproduct of tracial *-algebras, which as *-algebras embed into a matrix-ring over a commutative algebra.Comment: 23 pages, no figure

    Computation of Real Radical Ideals by Semidefinite Programming and Iterative Methods

    Get PDF
    Systems of polynomial equations with approximate real coefficients arise frequently as models in applications in science and engineering. In the case of a system with finitely many real solutions (the 00 dimensional case), an equivalent system generates the so-called real radical ideal of the system. In this case the equivalent real radical system has only real (i.e., no non-real) roots and no multiple roots. Such systems have obvious advantages in applications, including not having to deal with a potentially large number of non-physical complex roots, or with the ill-conditioning associated with roots with multiplicity. There is a corresponding, but more involved, description of the real radical for systems with real manifolds of solutions (the positive dimensional case) with corresponding advantages in applications. The stable and practical computation of real radicals in the approximate case is an important open problem. Theoretical advances and corresponding implemented algorithms are made for this problem. The approach of the thesis, is to use semidefinite programming (SDP) methods from algebraic geometry, and also techniques originating in the geometry of differential equations. The problem of finding the real radical is re-formulated as solving an SDP problem. This approach in the 00 dimensional case, was pioneered by Curto \& Fialkow with breakthroughs in the 00 dimensional case by Lasserre and collaborators. In the positive dimensional case, important contributions have been made of Ma, Wang and Zhi. The real radical corresponds to a generic point lying on the intersection of boundary of the convex cone of semidefinite matrices and a linear affine space associated with the polynomial system. As posed, this problem is not stable, since an arbitrarily small perturbation takes the point to an infeasible one outside the cone. A contribution of the thesis, is to show how to apply facial reduction pioneered by Borwein and Wolkowicz, to this problem. It is regularized by mapping the point to one which is strictly on the interior of another convex region, the minimal face of the cone. Then a strictly feasible point on the minimal face can be computed by accurate iterative methods such as the Douglas-Rachford method. Such a point corresponds to a generic point (max rank solution) of the SDP feasible problem. The regularization is done by solving the auxiliary problem which can be done again by iterative methods. This process is proved to be stable under some assumptions in this thesis as the max rank doesn\u27t change under sufficiently small perturbations. This well-posedness is also reflected in our examples, which are executed much more accurately than by methods based on interior point approaches. For a given polynomial system, and an integer d3˘e0d \u3e 0, Results of Curto \& Fialkow and Lasserre are generalized to give an algorithm for computing the real radical up to degree dd. Using this truncated real radical as input to critical point methods, can lead in many cases to validation of the real radical
    • …
    corecore