10,727 research outputs found

    Silicon Atomic Quantum Dots Enable Beyond-CMOS Electronics

    Full text link
    We review our recent efforts in building atom-scale quantum-dot cellular automata circuits on a silicon surface. Our building block consists of silicon dangling bond on a H-Si(001) surface, which has been shown to act as a quantum dot. First the fabrication, experimental imaging, and charging character of the dangling bond are discussed. We then show how precise assemblies of such dots can be created to form artificial molecules. Such complex structures can be used as systems with custom optical properties, circuit elements for quantum-dot cellular automata, and quantum computing. Considerations on macro-to-atom connections are discussed.Comment: 28 pages, 19 figure

    Simulation of a molecular QCA wire

    Get PDF
    Molecular Quantum Dot Cellular Automata (MQCA) are among the most promising emerging technologies for the expected theoretical operating frequencies (THz), the high device densities and the non-cryogenic working temperature. In this work we simulated a molecular QCA wire, based on a molecule synthesized ad-hoc for this technology. The results discussed are obtained by means of iterative steps of ab-initio calculation

    Evolving localizations in reaction-diffusion cellular automata

    Full text link
    We consider hexagonal cellular automata with immediate cell neighbourhood and three cell-states. Every cell calculates its next state depending on the integral representation of states in its neighbourhood, i.e. how many neighbours are in each one state. We employ evolutionary algorithms to breed local transition functions that support mobile localizations (gliders), and characterize sets of the functions selected in terms of quasi-chemical systems. Analysis of the set of functions evolved allows to speculate that mobile localizations are likely to emerge in the quasi-chemical systems with limited diffusion of one reagent, a small number of molecules is required for amplification of travelling localizations, and reactions leading to stationary localizations involve relatively equal amount of quasi-chemical species. Techniques developed can be applied in cascading signals in nature-inspired spatially extended computing devices, and phenomenological studies and classification of non-linear discrete systems.Comment: Accepted for publication in Int. J. Modern Physics

    On the Computational Power of DNA Annealing and Ligation

    Get PDF
    In [20] it was shown that the DNA primitives of Separate, Merge, and Amplify were not sufficiently powerful to invert functions defined by circuits in linear time. Dan Boneh et al [4] show that the addition of a ligation primitive, Append, provides the missing power. The question becomes, "How powerful is ligation? Are Separate, Merge, and Amplify necessary at all?" This paper proposes to informally explore the power of annealing and ligation for DNA computation. We conclude, in fact, that annealing and ligation alone are theoretically capable of universal computation

    SIMMUNE, a tool for simulating and analyzing immune system behavior

    Full text link
    We present a new approach to the simulation and analysis of immune system behavior. The simulations that can be done with our software package called SIMMUNE are based on immunological data that describe the behavior of immune system agents (cells, molecules) on a microscopial (i.e. agent-agent interaction) scale by defining cellular stimulus-response mechanisms. Since the behavior of the agents in SIMMUNE can be very flexibly configured, its application is not limited to immune system simulations. We outline the principles of SIMMUNE's multiscale analysis of emergent structure within the simulated immune system that allow the identification of immunological contexts using minimal a priori assumptions about the higher level organization of the immune system.Comment: 23 pages, 10 figure

    Quantum cellular automata quantum computing with endohedral fullerenes

    Get PDF
    We present a scheme to perform universal quantum computation using global addressing techniques as applied to a physical system of endohedrally doped fullerenes. The system consists of an ABAB linear array of Group V endohedrally doped fullerenes. Each molecule spin site consists of a nuclear spin coupled via a Hyperfine interaction to an electron spin. The electron spin of each molecule is in a quartet ground state S=3/2S=3/2. Neighboring molecular electron spins are coupled via a magnetic dipole interaction. We find that an all-electron construction of a quantum cellular automata is frustrated due to the degeneracy of the electronic transitions. However, we can construct a quantum celluar automata quantum computing architecture using these molecules by encoding the quantum information on the nuclear spins while using the electron spins as a local bus. We deduce the NMR and ESR pulses required to execute the basic cellular automata operation and obtain a rough figure of merit for the the number of gate operations per decoherence time. We find that this figure of merit compares well with other physical quantum computer proposals. We argue that the proposed architecture meets well the first four DiVincenzo criteria and we outline various routes towards meeting the fifth criteria: qubit readout.Comment: 16 pages, Latex, 5 figures, See http://planck.thphys.may.ie/QIPDDF/ submitted to Phys. Rev.
    • …
    corecore