89 research outputs found

    Combinatorial Gradient Fields for 2D Images with Empirically Convergent Separatrices

    Full text link
    This paper proposes an efficient probabilistic method that computes combinatorial gradient fields for two dimensional image data. In contrast to existing algorithms, this approach yields a geometric Morse-Smale complex that converges almost surely to its continuous counterpart when the image resolution is increased. This approach is motivated using basic ideas from probability theory and builds upon an algorithm from discrete Morse theory with a strong mathematical foundation. While a formal proof is only hinted at, we do provide a thorough numerical evaluation of our method and compare it to established algorithms.Comment: 17 pages, 7 figure

    MS3ALIGN: an efficient molecular surface aligner using the topology of surface curvature

    Get PDF
    Background: Aligning similar molecular structures is an important step in the process of bio-molecular structure and function analysis. Molecular surfaces are simple representations of molecular structure that are easily constructed from various forms of molecular data such as 3D atomic coordinates (PDB) and Electron Microscopy (EM) data. Methods: We present a Multi-Scale Morse-Smale Molecular-Surface Alignment tool, MS3ALIGN, which aligns molecular surfaces based on significant protrusions on the molecular surface. The input is a pair of molecular surfaces represented as triangle meshes. A key advantage of MS3ALIGN is computational efficiency that is achieved because it processes only a few carefully chosen protrusions on the molecular surface. Furthermore, the alignments are partial in nature and therefore allows for inexact surfaces to be aligned. Results: The method is evaluated in four settings. First, we establish performance using known alignments with varying overlap and noise values. Second, we compare the method with SurfComp, an existing surface alignment method. We show that we are able to determine alignments reported by SurfComp, as well as report relevant alignments not found by SurfComp. Third, we validate the ability of MS3ALIGN to determine alignments in the case of structurally dissimilar binding sites. Fourth, we demonstrate the ability of MS3ALIGN to align iso-surfaces derived from cryo-electron microscopy scans. Conclusions: We have presented an algorithm that aligns Molecular Surfaces based on the topology of surface curvature

    Visualization in Medicine and Life Sciences

    Full text link

    Data Analysis with the Morse-Smale Complex: The msr Package for R

    Get PDF
    In many areas, scientists deal with increasingly high-dimensional data sets. An important aspect for these scientists is to gain a qualitative understanding of the process or system from which the data is gathered. Often, both input variables and an outcome are observed and the data can be characterized as a sample from a high-dimensional scalar function. This work presents the R package msr for exploratory data analysis of multivariate scalar functions based on the Morse-Smale complex. The Morse-Smale complex provides a topologically meaningful decomposition of the domain. The msr package implements a discrete approximation of the Morse-Smale complex for data sets. In previous work this approximation has been exploited for visualization and partition-based regression, which are both supported in the msr package. The visualization combines the Morse-Smale complex with dimension-reduction techniques for a visual summary representation that serves as a guide for interactive exploration of the high-dimensional function. In a similar fashion, the regression employs a combination of linear models based on the Morse-Smale decomposition of the domain. This regression approach yields topologically accurate estimates and facilitates interpretation of general trends and statistical comparisons between partitions. In this manner, the msr package supports high-dimensional data understanding and exploration through the Morse-Smale complex

    Tracking features in image sequences using discrete Morse functions

    Get PDF
    The goal of this contribution is to present an application of discrete Morse theory to tracking features in image sequences. The proposed algorithm can be used for tracking moving figures in a filmed scene, for tracking moving particles, as well as for detecting canals in a CT scan of the head, or similar features in other types of data. The underlying idea which is used is the parametric discrete Morse theory presented in [13], where an algorithm for constructing the bifurcation diagram of a discrete family of discrete Morse functions was given. The original algorithm is improved here for the specific purpose of tracking features in images and other types of data, in order to produce more realistic results and eliminate irregularities which appear as a result of noise and excess details in the data

    Ascending and descending regions of a discrete Morse function

    Get PDF
    We present an algorithm which produces a decomposition of a regular cellular complex with a discrete Morse function analogous to the Morse-Smale decomposition of a smooth manifold with respect to a smooth Morse function. The advantage of our algorithm compared to similar existing results is that it works, at least theoretically, in any dimension. Practically, there are dimensional restrictions due to the size of cellular complexes of higher dimensions, though. We prove that the algorithm is correct in the sense that it always produces a decomposition into descending and ascending regions of the critical cells in a finite number of steps, and that, after a finite number of subdivisions, all the regions are topological discs. The efficiency of the algorithm is discussed and its performance on several examples is demonstrated.Comment: 23 pages, 12 figure

    Computing morse-smale complexes with accurate geometry

    Get PDF
    pre-printTopological techniques have proven highly successful in analyzing and visualizing scientific data. As a result, significant efforts have been made to compute structures like the Morse-Smale complex as robustly and efficiently as possible. However, the resulting algorithms, while topologically consistent, often produce incorrect connectivity as well as poor geometry. These problems may compromise or even invalidate any subsequent analysis. Moreover, such techniques may fail to improve even when the resolution of the domain mesh is increased, thus producing potentially incorrect results even for highly resolved functions. To address these problems we introduce two new algorithms: (i) a randomized algorithm to compute the discrete gradient of a scalar field that converges under refinement; and (ii) a deterministic variant which directly computes accurate geometry and thus correct connectivity of the MS complex. The first algorithm converges in the sense that on average it produces the correct result and its standard deviation approaches zero with increasing mesh resolution. The second algorithm uses two ordered traversals of the function to integrate the probabilities of the first to extract correct (near optimal) geometry and connectivity. We present an extensive empirical study using both synthetic and real-world data and demonstrates the advantages of our algorithms in comparison with several popular approaches

    Effective homology of k-D digital objects (partially) calculated in parallel

    Get PDF
    In [18], a membrane parallel theoretical framework for computing (co)homology information of fore- ground or background of binary digital images is developed. Starting from this work, we progress here in two senses: (a) providing advanced topological information, such as (co)homology torsion and effi- ciently answering to any decision or classification problem for sum of k -xels related to be a (co)cycle or a (co)boundary; (b) optimizing the previous framework to be implemented in using GPGPU computing. Discrete Morse theory, Effective Homology Theory and parallel computing techniques are suitably com- bined for obtaining a homological encoding, called algebraic minimal model, of a Region-Of-Interest (seen as cubical complex) of a presegmented k -D digital image
    corecore