9,637 research outputs found

    Tailoring palladium nanocontacts by electromigration

    Get PDF
    Electromigration is employed in nanoelectronics for transforming narrow metallic wires into electrodes separated by a few nanometers gap. In this work, we fabricate either nanoconstrictions or nanogap electrodes by performing electromigration in palladium nanowires. The device resistance and the cross section of the initial nanowires allow us to regulate the conditions for transforming deterministically each nanowire in a specific final device. The resulting samples show unique electrical transport characteristics and could be used in multiple nanoelectronics research applications, from ballistic transport to electrodes for single molecular devices.Fil: Arzubiaga, Libe. CIC nanoGUNE; EspañaFil: Golmar, Federico. Instituto Nacional de Tecnología Industrial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Llopis, Roger. CIC nanoGUNE; EspañaFil: Casanova, Félix. CIC nanoGUNE; España. Basque Foundation for Science; EspañaFil: Hueso, Luis E.. CIC nanoGUNE; España. Basque Foundation for Science; Españ

    Thermal Conductivity and Thermal Rectification in Graphene Nanoribbons: a Molecular Dynamics Study

    Full text link
    We have used molecular dynamics to calculate the thermal conductivity of symmetric and asymmetric graphene nanoribbons (GNRs) of several nanometers in size (up to ~4 nm wide and ~10 nm long). For symmetric nanoribbons, the calculated thermal conductivity (e.g. ~2000 W/m-K @400K for a 1.5 nm {\times} 5.7 nm zigzag GNR) is on the similar order of magnitude of the experimentally measured value for graphene. We have investigated the effects of edge chirality and found that nanoribbons with zigzag edges have appreciably larger thermal conductivity than nanoribbons with armchair edges. For asymmetric nanoribbons, we have found significant thermal rectification. Among various triangularly-shaped GNRs we investigated, the GNR with armchair bottom edge and a vertex angle of 30{\deg} gives the maximal thermal rectification. We also studied the effect of defects and found that vacancies and edge roughness in the nanoribbons can significantly decrease the thermal conductivity. However, substantial thermal rectification is observed even in the presence of edge roughness.Comment: 13 pages, 5 figures, slightly expanded from the published version on Nano Lett. with some additional note

    Mechanical properties and thermal conductivity of graphitic carbon nitride: A molecular dynamics study

    Full text link
    Graphitic carbon nitride nanosheets are among 2D attractive materials due to presenting unusual physicochemical properties.Nevertheless, no adequate information exists about their mechanical and thermal properties. Therefore, we used classical molecular dynamics simulations to explore the thermal conductivity and mechanical response of two main structures of single-layer triazine-basedg-C3N4 films.By performing uniaxial tensile modeling, we found remarkable elastic modulus of 320 and 210 GPa, and tensile strength of 47 GPa and 30 GPa for two different structures of g-C3N4sheets. Using equilibrium molecular dynamics simulations, the thermal conductivity of free-standing g-C3N4 structures were also predicted to be around 7.6 W/mK and 3.5 W/mK. Our study suggests the g-C3N4films as exciting candidate for reinforcement of polymeric materials mechanical properties

    On the Thermal Stability of Graphone

    Full text link
    Molecular dynamics simulation is used to study thermally activated migration of hydrogen atoms in graphone, a magnetic semiconductor formed of a graphene monolayer with one side covered with hydrogen so that hydrogen atoms are adsorbed on each other carbon atom only. The temperature dependence of the characteristic time of disordering of graphone via hopping of hydrogen atoms to neighboring carbon atoms is established directly. The activation energy of this process is found to be Ea=(0.05+-0.01) eV. The small value of Ea points to extremely low thermal stability of graphone, this being a serious handicap for practical use of the material in nanoelectronics.Comment: 3 figure

    Nanotrench for nano and microparticle electrical interconnects

    Get PDF
    We present a simple and versatile patterning procedure for the reliable and reproducible fabrication of high aspect ratio (10 4 ) electrical interconnects that have separation distances down to 20 nm and lengths of several hundreds of microns. The process uses standard optical lithography techniques and allows parallel processing of many junctions, making it easily scalable and industrially relevant. We demonstrate the suitability of these nanotrenches as electrical interconnects for addressing micro and nanoparticles by realizing several circuits with integrated species. Furthermore, low impedance metal-metal low contacts are shown to be obtained when trapping a single metal-coated microsphere in the gap, emphasizing the intrinsic good electrical conductivity of the interconnects, even though a wet process is used. Highly resistive magnetite-based nanoparticles networks also demonstrate the advantage of the high aspect ratio of the nanotrenches for providing access to electrical properties of highly resistive materials, with leakage current levels below 1 pA. © 2010 IOP Publishing Ltd
    • 

    corecore