2,310 research outputs found

    Testing and Validation Framework for Autonomous Aerial Vehicles

    Get PDF
    Autonomous aerial vehicles (AAV) have the potential to have market disruptions for various industries such as ground delivery and aerial transportation. Hence, the USAF has called for increased level of autonomy. There has been a significant progress in artificial intelligence engines, complex and non-deterministic system components, which are at the core of the autonomous aerial platforms. Traditional testing and validation methods fall short of satisfying the requirement of testing such complex systems. Therefore, to achieve highly or fully autonomous capabilities, a major leap forward in the validation is required. The key challenges are the localization of problems, development of object models for perception and the creation of a safety measure. A similar challenge exists in ground autonomous vehicles (AVs), where there is a significant investment in recent years. However, there are important differences in the environmental and regulatory conditions between these two domains. In this paper, we present a validation framework that uses modeling and simulation and formal methods for solving the issues in the validation of AAVs. We define a novel abstraction stack using separation of concerns and create a testing plan using techniques such as constrained pseudo-random test generation, random walks and functional assertions. The system aims to assess the creation of an evolving safety measure and a licensing structure

    Routing, Localization And Positioning Protocols For Wireless Sensor And Actor Networks

    Get PDF
    Wireless sensor and actor networks (WSANs) are distributed systems of sensor nodes and actors that are interconnected over the wireless medium. Sensor nodes collect information about the physical world and transmit the data to actors by using one-hop or multi-hop communications. Actors collect information from the sensor nodes, process the information, take decisions and react to the events. This dissertation presents contributions to the methods of routing, localization and positioning in WSANs for practical applications. We first propose a routing protocol with service differentiation for WSANs with stationary nodes. In this setting, we also adapt a sports ranking algorithm to dynamically prioritize the events in the environment depending on the collected data. We extend this routing protocol for an application, in which sensor nodes float in a river to gather observations and actors are deployed at accessible points on the coastline. We develop a method with locally acting adaptive overlay network formation to organize the network with actor areas and to collect data by using locality-preserving communication. We also present a multi-hop localization approach for enriching the information collected from the river with the estimated locations of mobile sensor nodes without using positioning adapters. As an extension to this application, we model the movements of sensor nodes by a subsurface meandering current mobility model with random surface motion. Then we adapt the introduced routing and network organization methods to model a complete primate monitoring system. A novel spatial cut-off preferential attachment model and iii center of mass concept are developed according to the characteristics of the primate groups. We also present a role determination algorithm for primates, which uses the collection of spatial-temporal relationships. We apply a similar approach to human social networks to tackle the problem of automatic generation and organization of social networks by analyzing and assessing interaction data. The introduced routing and localization protocols in this dissertation are also extended with a novel three dimensional actor positioning strategy inspired by the molecular geometry. Extensive simulations are conducted in OPNET simulation tool for the performance evaluation of the proposed protocol

    VBCA: A Virtual Forces Clustering Algorithm for Autonomous Aerial Drone Systems

    Get PDF
    We consider the positioning problem of aerial drone systems for efficient three-dimensional (3-D) coverage. Our solution draws from molecular geometry, where forces among electron pairs surrounding a central atom arrange their positions. In this paper, we propose a 3-D clustering algorithm for autonomous positioning (VBCA) of aerial drone networks based on virtual forces. These virtual forces induce interactions among drones and structure the system topology. The advantages of our approach are that (1) virtual forces enable drones to self-organize the positioning process and (2) VBCA can be implemented entirely localized. Extensive simulations show that our virtual forces clustering approach produces scalable 3-D topologies exhibiting near-optimal volume coverage. VBCA triggers efficient topology rearrangement for an altering number of nodes, while providing network connectivity to the central drone. We also draw a comparison of volume coverage achieved by VBCA against existing approaches and find VBCA up to 40% more efficient

    VBCA: A Virtual Forces Clustering Algorithm for Autonomous Aerial Drone Systems

    Get PDF
    We consider the positioning problem of aerial drone systems for efficient three-dimensional (3-D) coverage. Our solution draws from molecular geometry, where forces among electron pairs surrounding a central atom arrange their positions. In this paper, we propose a 3-D clustering algorithm for autonomous positioning (VBCA) of aerial drone networks based on virtual forces. These virtual forces induce interactions among drones and structure the system topology. The advantages of our approach are that (1) virtual forces enable drones to self-organize the positioning process and (2) VBCA can be implemented entirely localized. Extensive simulations show that our virtual forces clustering approach produces scalable 3-D topologies exhibiting near-optimal volume coverage. VBCA triggers efficient topology rearrangement for an altering number of nodes, while providing network connectivity to the central drone. We also draw a comparison of volume coverage achieved by VBCA against existing approaches and find VBCA up to 40% more efficient

    Massive MIMO is a Reality -- What is Next? Five Promising Research Directions for Antenna Arrays

    Full text link
    Massive MIMO (multiple-input multiple-output) is no longer a "wild" or "promising" concept for future cellular networks - in 2018 it became a reality. Base stations (BSs) with 64 fully digital transceiver chains were commercially deployed in several countries, the key ingredients of Massive MIMO have made it into the 5G standard, the signal processing methods required to achieve unprecedented spectral efficiency have been developed, and the limitation due to pilot contamination has been resolved. Even the development of fully digital Massive MIMO arrays for mmWave frequencies - once viewed prohibitively complicated and costly - is well underway. In a few years, Massive MIMO with fully digital transceivers will be a mainstream feature at both sub-6 GHz and mmWave frequencies. In this paper, we explain how the first chapter of the Massive MIMO research saga has come to an end, while the story has just begun. The coming wide-scale deployment of BSs with massive antenna arrays opens the door to a brand new world where spatial processing capabilities are omnipresent. In addition to mobile broadband services, the antennas can be used for other communication applications, such as low-power machine-type or ultra-reliable communications, as well as non-communication applications such as radar, sensing and positioning. We outline five new Massive MIMO related research directions: Extremely large aperture arrays, Holographic Massive MIMO, Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive MIMO.Comment: 20 pages, 9 figures, submitted to Digital Signal Processin

    Ultra-Wideband Technology: Characteristcs, Applications and Challenges

    Full text link
    Ultra-wideband (UWB) technology is a wireless communication technology designed for short-range applications. It is characterized by its ability to generate and transmit radio-frequency energy over an extensive frequency range. This paper provides an overview of UWB technology including its definition, two representative schemes and some key characteristics distinguished from other types of communication. Besides, this paper also analyses some widely used applications of UWB technology and highlights some of the challenges associated with implementing UWB in real-world scenarios. Furthermore, this paper expands upon UWB technology to encompass terahertz technology, providing an overview of the current status of terahertz communication, and conducting an analysis of the advantages, challenges, and certain corresponding solutions pertaining to ultra-wideband THz communication

    Auxin transport-feedback models of patterning in plants

    Full text link
    Many patterning events in plants are regulated by the phytohormone auxin. In fact, so many things are under the influence of auxin that it seems difficult to understand how a single hormone can do so much. Auxin moves throughout the plant via a network of specialized membrane-bound import and export proteins, which are often differentially expressed and polarized depending on tissue type. Here, we review simulation models of pattern formation that are based on the control of these transporters by auxin itself. In these transport-feedback models, diversity in patterning comes not from the addition of more morphogens, but rather by varying the mechanism that regulates the transporters

    RoPEUS: A New Robust Algorithm for Static Positioning in Ultrasonic Systems

    Get PDF
    A well known problem for precise positioning in real environments is the presence of outliers in the measurement sample. Its importance is even bigger in ultrasound based systems since this technology needs a direct line of sight between emitters and receivers. Standard techniques for outlier detection in range based systems do not usually employ robust algorithms, failing when multiple outliers are present. The direct application of standard robust regression algorithms fails in static positioning (where only the current measurement sample is considered) in real ultrasound based systems mainly due to the limited number of measurements and the geometry effects. This paper presents a new robust algorithm, called RoPEUS, based on MM estimation, that follows a typical two-step strategy: 1) a high breakdown point algorithm to obtain a clean sample, and 2) a refinement algorithm to increase the accuracy of the solution. The main modifications proposed to the standard MM robust algorithm are a built in check of partial solutions in the first step (rejecting bad geometries) and the off-line calculation of the scale of the measurements. The algorithm is tested with real samples obtained with the 3D-LOCUS ultrasound localization system in an ideal environment without obstacles. These measurements are corrupted with typical outlying patterns to numerically evaluate the algorithm performance with respect to the standard parity space algorithm. The algorithm proves to be robust under single or multiple outliers, providing similar accuracy figures in all cases

    Experimental characterization of UAV-to-car communications

    Full text link
    [EN] Unmanned Aerial Vehicles (UAVs), popularly known as drones, can be deployed in conjunction with a network of ground vehicles. In situations where no infrastructure is available, drones can be deployed as mobile infrastructure elements to offer all types of services. Examples of such services include safety in rural areas where, upon an emergency event, drones can be quickly deployed as information relays for distributing critical warning to vehicles. In this work, we analyze the communications performance on the link between cars and drones taking into account the altitude, the antenna orientation, and the relative distance. The presented results show that the communication between a drone and a car can reach up to three kilometers in a rural area, and achieves at least a fifty percent success ratio for the delivery rate at a 2.7 km range. Finally, to allow integrating the communications link behaviour in different network simulators, the experimental results were also modeled with a modified Gaussian function that offers a suitable representation for this kind of communication.This work was partially supported by the "Ministerio de Economia y Competividad, Programa Estatal de Investigacion, Desarollo e Innovacion Orientada a los Retos de la Sociedad, Proyectos I+D+I 2014", Spain, under grants TEC2014-52690-R and BES-2015-075988.Hadiwardoyo, SA.; Hernández-Orallo, E.; Tavares De Araujo Cesariny Calafate, CM.; Cano, J.; Manzoni, P. (2018). Experimental characterization of UAV-to-car communications. Computer Networks. 136:105-118. https://doi.org/10.1016/j.comnet.2018.03.002S10511813
    corecore