7,167 research outputs found

    Self-Assembly Behavior of Amphiphilic Janus Dendrimers in Water: A Combined Experimental and Coarse-Grained Molecular Dynamics Simulation Approach

    Get PDF
    Indexación: Scopus.Acknowledgments: M.E.E.G. thank the Ph. D. scholarship (251115) from CONACyT. The authors would like to thank: Luis Elizalde-Herrera (CIQA) for his help running the NMR spectra; Gloria Macedo-Raygoza and Miguel J. Beltrán-García (UAG), for their help in the measuring of MALDI-TOF mass spectra; and Maricela Rodríguez-Nieto and Jorge Luis Menchaca (UANL), for their help with the AFM measurements. FDGN thanks to the USA Air Force Office of Scientific Research Awards.Amphiphilic Janus dendrimers (JDs) are repetitively branched molecules with hydrophilic and hydrophobic components that self-assemble in water to form a variety of morphologies, including vesicles analogous to liposomes with potential pharmaceutical and medical application. To date, the self-assembly of JDs has not been fully investigated thus it is important to gain insight into its mechanism and dependence on JDs’ molecular structure. In this study, the aggregation behavior in water of a second-generation bis-MPA JD was evaluated using experimental and computational methods. Dispersions of JDs in water were carried out using the thin-film hydration and ethanol injection methods. Resulting assemblies were characterized by dynamic light scattering, confocal microscopy, and atomic force microscopy. Furthermore, a coarse-grained molecular dynamics (CG-MD) simulation was performed to study the mechanism of JDs aggregation. The obtaining of assemblies in water with no interdigitated bilayers was confirmed by the experimental characterization and CG-MD simulation. Assemblies with dendrimersome characteristics were obtained using the ethanol injection method. The results of this study establish a relationship between the molecular structure of the JD and the properties of its aggregates in water. Thus, our findings could be relevant for the design of novel JDs with tailored assemblies suitable for drug delivery systems. © 2018 by the authors.https://www.mdpi.com/1420-3049/23/4/96

    Toy amphiphiles on the computer: What can we learn from generic models?

    Full text link
    Generic coarse-grained models are designed such that they are (i) simple and (ii) computationally efficient. They do not aim at representing particular materials, but classes of materials, hence they can offer insight into universal properties of these classes. Here we review generic models for amphiphilic molecules and discuss applications in studies of self-assembling nanostructures and the local structure of bilayer membranes, i.e. their phases and their interactions with nanosized inclusions. Special attention is given to the comparison of simulations with elastic continuum models, which are, in some sense, generic models on a higher coarse-graining level. In many cases, it is possible to bridge quantitatively between generic particle models and continuum models, hence multiscale modeling works on principle. On the other side, generic simulations can help to interpret experiments by providing information that is not accessible otherwise.Comment: Invited feature article, to appear in Macromolecular Rapid Communication

    Desorption of hydrocarbon chains by association with ionic and nonionic surfactants under flow as a mechanism for enhanced oil recovery

    Full text link
    The need to extract oil from wells where it is embedded on the surfaces of rocks has led to the development of new and improved enhanced oil recovery techniques. One of those is the injection of surfactants with water vapor, which promotes desorption of oil that can then be extracted using pumps, as the surfactants encapsulate the oil in foams. However, the mechanisms that lead to the optimal desorption of oil and the best type of surfactants to carry out desorption are not well known yet, which warrants the need to carry out basic research on this topic. In this work, we report non equilibrium dissipative particle dynamics simulations of model surfactants and oil molecules adsorbed on surfaces, with the purpose of studying the efficiency of the surfactants to desorb hydrocarbon chains, that are found adsorbed over flat surfaces. The model surfactants studied correspond to nonionic and cationic surfactants, and the hydrocarbon desorption is studied as a function of surfactant concentration under increasing Poiseuille flow. We obtain various hydrocarbon desorption isotherms for every model of surfactant proposed, under flow. Nonionic surfactants are found to be the most effective to desorb oil and the mechanisms that lead to this phenomenon are presented and discussed.Comment: 10 figures; to appear in Scientific Report

    Field theoretic study of bilayer membrane fusion: I. Hemifusion mechanism

    Get PDF
    Self-consistent field theory is used to determine structural and energetic properties of metastable intermediates and unstable transition states involved in the standard stalk mechanism of bilayer membrane fusion. A microscopic model of flexible amphiphilic chains dissolved in hydrophilic solvent is employed to describe these self-assembled structures. We find that the barrier to formation of the initial stalk is much smaller than previously estimated by phenomenological theories. Therefore its creation it is not the rate limiting process. The barrier which is relevant is associated with the rather limited radial expansion of the stalk into a hemifusion diaphragm. It is strongly affected by the architecture of the amphiphile, decreasing as the effective spontaneous curvature of the amphiphile is made more negative. It is also reduced when the tension is increased. At high tension the fusion pore, created when a hole forms in the hemifusion diaphragm, expands without bound. At very low membrane tension, small fusion pores can be trapped in a flickering metastable state. Successful fusion is severely limited by the architecture of the lipids. If the effective spontaneous curvature is not sufficiently negative, fusion does not occur because metastable stalks, whose existence is a seemingly necessary prerequisite, do not form at all. However if the spontaneous curvature is too negative, stalks are so stable that fusion does not occur because the system is unstable either to a phase of stable radial stalks, or to an inverted-hexagonal phase induced by stable linear stalks. Our results on the architecture and tension needed for successful fusion are summarized in a phase diagram.Comment: in press, Biophys.J. accepted versio
    • …
    corecore