558 research outputs found

    A Study of Archiving Strategies in Multi-Objective PSO for Molecular Docking

    Get PDF
    Molecular docking is a complex optimization problem aimed at predicting the position of a ligand molecule in the active site of a receptor with the lowest binding energy. This problem can be formulated as a bi-objective optimization problem by minimizing the binding energy and the Root Mean Square Deviation (RMSD) difference in the coordinates of ligands. In this context, the SMPSO multi-objective swarm-intelligence algorithm has shown a remarkable performance. SMPSO is characterized by having an external archive used to store the non-dominated solutions and also as the basis of the leader selection strategy. In this paper, we analyze several SMPSO variants based on different archiving strategies in the scope of a benchmark of molecular docking instances. Our study reveals that the SMPSOhv, which uses an hypervolume contribution based archive, shows the overall best performance.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    A New Multi-Objective Approach for Molecular Docking Based on RMSD and Binding Energy

    Get PDF
    Ligand-protein docking is an optimization problem based on predicting the position of a ligand with the lowest binding energy in the active site of the receptor. Molecular docking problems are traditionally tackled with single-objective, as well as with multi-objective approaches, to minimize the binding energy. In this paper, we propose a novel multi-objective formulation that considers: the Root Mean Square Deviation (RMSD) difference in the coordinates of ligands and the binding (intermolecular) energy, as two objectives to evaluate the quality of the ligand-protein interactions. To determine the kind of Pareto front approximations that can be obtained, we have selected a set of representative multi-objective algorithms such as NSGA-II, SMPSO, GDE3, and MOEA/D. Their performances have been assessed by applying two main quality indicators intended to measure convergence and diversity of the fronts. In addition, a comparison with LGA, a reference single-objective evolutionary algorithm for molecular docking (AutoDock) is carried out. In general, SMPSO shows the best overall results in terms of energy and RMSD (value lower than 2A for successful docking results). This new multi-objective approach shows an improvement over the ligand-protein docking predictions that could be promising in in silico docking studies to select new anticancer compounds for therapeutic targets that are multidrug resistant.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    An Evolutionary Approach to Drug-Design Using Quantam Binary Particle Swarm Optimization Algorithm

    Full text link
    The present work provides a new approach to evolve ligand structures which represent possible drug to be docked to the active site of the target protein. The structure is represented as a tree where each non-empty node represents a functional group. It is assumed that the active site configuration of the target protein is known with position of the essential residues. In this paper the interaction energy of the ligands with the protein target is minimized. Moreover, the size of the tree is difficult to obtain and it will be different for different active sites. To overcome the difficulty, a variable tree size configuration is used for designing ligands. The optimization is done using a quantum discrete PSO. The result using fixed length and variable length configuration are compared.Comment: 4 pages, 6 figures (Published in IEEE SCEECS 2012). arXiv admin note: substantial text overlap with arXiv:1205.641

    Minimum Population Search, an Application to Molecular Docking

    Get PDF
    Computer modeling of protein-ligand interactions is one of the most important phases in a drug design process. Part of the process involves the optimization of highly multi-modal objective (scoring) functions. This research presents the Minimum Population Search heuristic as an alternative for solving these global unconstrained optimization problems. To determine the effectiveness of Minimum Population Search, a comparison with seven state-of-the-art search heuristics is performed. Being specifically designed for the optimization of large scale multi-modal problems, Minimum Population Search achieves excellent results on all of the tested complexes, especially when the amount of available function evaluations is strongly reduced. A first step is also made toward the design of hybrid algorithms based on the exploratory power of Minimum Population Search. Computational results show that hybridization leads to a further improvement in performance

    Optimización multi-objetivo en las ciencias de la vida.

    Get PDF
    Para conseguir este objetivo, en lugar de intentar incorporar nuevos algoritmos directamente en el código fuente de AutoDock, se utilizó un framework orientado a la resolución de problemas de optimización con metaheurísticas. Concretamente, se usó jMetal, que es una librería de código libre basada en Java. Ya que AutoDock está implementado en C++, se desarrolló una versión en C++ de jMetal (posteriormente distribuida públicamente). De esta manera, se consiguió integrar ambas herramientas (AutoDock 4.2 y jMetal) para optimizar la energía libre de unión entre compuesto químico y receptor. Después de disponer de una amplia colección de metaheurísticas implementadas en jMetalCpp, se realizó un detallado estudio en el cual se aplicaron un conjunto de metaheurísticas para optimizar un único objetivo minimizando la energía libre de unión, el cual es el resultado de la suma de todos los términos de energía de la función objetivo de energía de AutoDock 4.2. Por lo tanto, cuatro metaheurísticas tales como dos variantes de algoritmo genético gGA (Algoritmo Genético generacional) y ssGA (Algoritmo Genético de estado estacionario), DE (Evolución Diferencial) y PSO (Optimización de Enjambres de Partículas) fueron aplicadas para resolver el problema del acoplamiento molecular. Esta fase se dividió en dos subfases en las que se usaron dos conjuntos de instancias diferentes, utilizando como receptores HIV-proteasas con cadenas laterales de aminoacidos flexibles y como ligandos inhibidores HIV-proteasas flexibles. El primer conjunto de instancias se usó para un estudio de configuración de parámetros de los algoritmos y el segundo para comparar la precisión de las conformaciones ligando-receptor obtenidas por AutoDock y AutoDock+jMetalCpp. La siguiente fase implicó aplicar una formulación multi-objetivo para resolver problemas de acoplamiento molecular dados los resultados interesantes obtenidos en estudios previos existentes en los que dos objetivos como la energía intermolecular y la energía intramolecular fueron minimizados. Por lo tanto, se comparó y analizó el rendimiento de un conjunto de metaheurísticas multi-objetivo mediante la resolución de complejos flexibles de acoplamiento molecular minimizando la energía inter- e intra-molecular. Estos algoritmos fueron: NSGA-II (Algoritmo Genético de Ordenación No dominada) y su versión de estado estacionario (ssNSGA-II), SMPSO (Optimización Multi-objetivo de Enjambres de Partículas con Modulación de Velocidad), GDE3 (Tercera versión de la Evolución Diferencial Generalizada), MOEA/D (Algoritmo Evolutivo Multi-Objetivo basado en la Decomposición) y SMS-EMOA (Optimización Multi-objetivo Evolutiva con Métrica S). Después de probar enfoques multi-objetivo ya existentes, se probó uno nuevo. En concreto, el uso del RMSD como un objetivo para encontrar soluciones similares a la de la solución de referencia. Se replicó el estudio previo usando este conjunto diferente de objetivos. Por último, se analizó de forma detallada el algoritmo que obtuvo mejores resultados en los estudios previos. En concreto, se realizó un estudio de variantes del SMPSO minimizando la energía intermolecular y el RMSD. Este estudio proporcionó algunas pistas sobre cómo nuevos algoritmos basados en SMPSO pueden ser adaptados para mejorar los resultados de acoplamiento molecular para aquellas simulaciones que involucren ligandos y receptores flexibles. Esta tesis demuestra que la inclusión de técnicas metaheurísticas de jMetalCpp en la herramienta de acoplamiento molecular AutoDock incrementa las posibilidades a los usuarios de ámbito biológico cuando resuelven el problema del acoplamiento molecular. El uso de técnicas de optimización mono-objetivo diferentes aparte de aquéllas ampliamente usadas en las comunidades de acoplamiento molecular podría dar lugar a soluciones de mayor calidad. En nuestro caso de estudio mono-objetivo, el algoritmo de evolución diferencial obtuvo mejores resultados que aquellos obtenidos por AutoDock. También se propone diferentes enfoques multi-objetivo para resolver el problema del acoplamiento molecular, tales como la decomposición de los términos de la energía de unión o el uso del RMSD como un objetivo. Finalmente, se demuestra que el SMPSO, una metaheurística de optimización multi-objetivo de enjambres de partículas, es una técnica remarcable para resolver problemas de acoplamiento molecular cuando se usa un enfoque multi-objetivo, obteniendo incluso mejores soluciones que las técnicas mono-objetivo.Las herramientas de acoplamiento molecular han llegado a ser bastante eficientes en el descubrimiento de fármacos y en el desarrollo de la investigación de la industria farmacéutica. Estas herramientas se utilizan para elucidar la interacción de una pequeña molécula (ligando) y una macro-molécula (diana) a un nivel atómico para determinar cómo el ligando interactúa con el sitio de unión de la proteína diana y las implicaciones que estas interacciones tienen en un proceso bioquímico dado. En el desarrollo computacional de las herramientas de acoplamiento molecular los investigadores de este área se han centrado en mejorar los componentes que determinan la calidad del software de acoplamiento molecular: 1) la función objetivo y 2) los algoritmos de optimización. La función objetivo de energía se encarga de proporcionar una evaluación de las conformaciones entre el ligando y la proteína calculando la energía de unión, que se mide en kcal/mol. En esta tesis, se ha usado AutoDock, ya que es una de las herramientas de acoplamiento molecular más citada y usada, y cuyos resultados son muy precisos en términos de energía y valor de RMSD (desviación de la media cuadrática). Además, se ha seleccionado la función de energía de AutoDock versión 4.2, ya que permite realizar una mayor cantidad de simulaciones realistas incluyendo flexibilidad en el ligando y en las cadenas laterales de los aminoácidos del receptor que están en el sitio de unión. Se han utilizado algoritmos de optimización para mejorar los resultados de acoplamiento molecular de AutoDock 4.2, el cual minimiza la energía libre de unión final que es la suma de todos los términos de energía de la función objetivo de energía. Dado que encontrar la solución óptima en el acoplamiento molecular es un problema de gran complejidad y la mayoría de las veces imposible, se suelen utilizar algoritmos no exactos como las metaheurísticas, para así obtener soluciones lo suficientemente buenas en un tiempo razonable

    An Effective Swarm Intelligence Optimization Algorithm for Flexible Ligand Docking

    Get PDF

    Parallel multi-swarm cooperative particle swarm optimization for protein–ligand docking and virtual screening

    Get PDF
    BACKGROUND: A high-quality docking method tends to yield multifold gains with half pains for the new drug development. Over the past few decades, great efforts have been made for the development of novel docking programs with great efficiency and intriguing accuracy. AutoDock Vina (Vina) is one of these achievements with improved speed and accuracy compared to AutoDock4. Since it was proposed, some of its variants, such as PSOVina and GWOVina, have also been developed. However, for all these docking programs, there is still large room for performance improvement. RESULTS: In this work, we propose a parallel multi-swarm cooperative particle swarm model, in which one master swarm and several slave swarms mutually cooperate and co-evolve. Our experiments show that multi-swarm programs possess better docking robustness than PSOVina. Moreover, the multi-swarm program based on random drift PSO can achieve the best highest accuracy of protein–ligand docking, an outstanding enrichment effect for drug-like activate compounds, and the second best AUC screening accuracy among all the compared docking programs, but with less computation consumption than most of the other docking programs. CONCLUSION: The proposed multi-swarm cooperative model is a novel algorithmic modeling suitable for protein–ligand docking and virtual screening. Owing to the existing coevolution between the master and the slave swarms, this model in parallel generates remarkable docking performance. The source code can be freely downloaded from https://github.com/li-jin-xing/MPSOVina. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12859-022-04711-0

    On the role of metaheuristic optimization in bioinformatics

    Get PDF
    Metaheuristic algorithms are employed to solve complex and large-scale optimization problems in many different fields, from transportation and smart cities to finance. This paper discusses how metaheuristic algorithms are being applied to solve different optimization problems in the area of bioinformatics. While the text provides references to many optimization problems in the area, it focuses on those that have attracted more interest from the optimization community. Among the problems analyzed, the paper discusses in more detail the molecular docking problem, the protein structure prediction, phylogenetic inference, and different string problems. In addition, references to other relevant optimization problems are also given, including those related to medical imaging or gene selection for classification. From the previous analysis, the paper generates insights on research opportunities for the Operations Research and Computer Science communities in the field of bioinformatics

    Software for molecular docking: a review

    Get PDF
    Publshed ArticleMolecular docking methodology explores the behavior of small molecules in the binding site of a target protein. As more protein structures are determined experimentally using X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy, molecular docking is increasingly used as a tool in drug discovery. Docking against homologymodeled targets also becomes possible for proteins whose structures are not known. With the docking strategies, the druggability of the compounds and their specificity against a particular target can be calculated for further lead optimization processes. Molecular docking programs perform a search algorithm in which the conformation of the ligand is evaluated recursively until the convergence to the minimum energy is reached. Finally, an affinity scoring function, ΔG [U total in kcal/mol], is employed to rank the candidate poses as the sum of the electrostatic and van der Waals energies. The driving forces for these specific interactions in biological systems aim toward complementarities between the shape and electrostatics of the binding site surfaces and the ligand or substrate
    corecore