13,987 research outputs found

    Imaging the symmetry breaking of molecular orbitals in carbon nanotubes

    Get PDF
    Carbon nanotubes have attracted considerable interest for their unique electronic properties. They are fascinating candidates for fundamental studies of one dimensional materials as well as for future molecular electronics applications. The molecular orbitals of nanotubes are of particular importance as they govern the transport properties and the chemical reactivity of the system. Here we show for the first time a complete experimental investigation of molecular orbitals of single wall carbon nanotubes using atomically resolved scanning tunneling spectroscopy. Local conductance measurements show spectacular carbon-carbon bond asymmetry at the Van Hove singularities for both semiconducting and metallic tubes, demonstrating the symmetry breaking of molecular orbitals in nanotubes. Whatever the tube, only two types of complementary orbitals are alternatively observed. An analytical tight-binding model describing the interference patterns of ? orbitals confirmed by ab initio calculations, perfectly reproduces the experimental results

    Imaging Electron Wave Functions of Quantized Energy Levels in Carbon Nanotubes

    Full text link
    Carbon nanotubes provide a unique system to study one-dimensional quantization phenomena. Scanning tunneling microscopy is used to observe the electronic wave functions that correspond to quantized energy levels in short metallic carbon nanotubes. Discrete electron waves are apparent from periodic oscillations in the differential conductance as a function of the position along the tube axis, with a period that differs from that of the atomic lattice. Wave functions can be observed for several electron states at adjacent discrete energies. The measured wavelengths are in good agreement with the calculated Fermi wavelength for armchair nanotubes.Comment: 11 pages, 4 figures in seperate PDF fil

    The Cyclohedron Test for Finding Periodic Genes in Time Course Expression Studies

    Get PDF
    The problem of finding periodically expressed genes from time course microarray experiments is at the center of numerous efforts to identify the molecular components of biological clocks. We present a new approach to this problem based on the cyclohedron test, which is a rank test inspired by recent advances in algebraic combinatorics. The test has the advantage of being robust to measurement errors, and can be used to ascertain the significance of top-ranked genes. We apply the test to recently published measurements of gene expression during mouse somitogenesis and find 32 genes that collectively are significant. Among these are previously identified periodic genes involved in the Notch/FGF and Wnt signaling pathways, as well as novel candidate genes that may play a role in regulating the segmentation clock. These results confirm that there are an abundance of exceptionally periodic genes expressed during somitogenesis. The emphasis of this paper is on the statistics and combinatorics that underlie the cyclohedron test and its implementation within a multiple testing framework.Comment: Revision consists of reorganization and further statistical discussion; 19 pages, 4 figure

    Energy resolved STM mapping of C60_{60} on metal surfaces: A theoretical study

    Get PDF
    We present a detailed theoretical study of scanning tunneling imaging and spectroscopy of \Csixty on silver and gold surfaces, motivated by the recent experiments and discussion by X. Lu et al. [PRL \textbf{90}, 096802 (2003) and PRB \textbf{70}, 115418 (2004)]. The surface/sample/tip system is described within a self--consistent DFT based tight--binding model. The topographic and conductance images are computed at constant current from a full self--consistent transport theory based on nonequilibrium Green's functions and compared with those simulated from the local density of states. The molecular orbitals of \Csixty are clearly identified in the energy resolved maps, in close correspondence with the experimental results. We show how the tip structure and orientation can affect the images. In particular, we consider the effects of truncated tips on the energy resolved maps.Comment: 9 pages, 8 figure

    Fabrication of microcantilever-based IO grated waveguide sensors for detection of nano-displacements

    Get PDF
    We propose a novel and highly sensitive integrated read-out scheme, capable of detecting sub-nanometre deflections of a cantilever in close proximity to a grated waveguide structure. A very compact and stable sensor element can be realized by monolithically integrating a microcantilever structure with the grated waveguide (GWG), using conventional layer deposition and sacrificial layer etching techniques. The platform integrating a high quality GWG and a low initial bending cantilever has been fabricated and characterized

    Antismoking campaigns’ perception and gender differences: a comparison among EEG Indices

    Get PDF
    Human factors’ aim is to understand and evaluate the interactions between people and tasks, technologies, and environment. Among human factors, it is possible then to include the subjective reaction to external stimuli, due to individual’s characteristics and states of mind. These processes are also involved in the perception of antismoking public service announcements (PSAs), the main tool for governments to contrast the first cause of preventable deaths in the world: tobacco addiction. In the light of that, in the present article, it has been investigated through the comparison of different electroencephalographic (EEG) indices a typical item known to be able of influencing PSA perception, that is gender. In order to investigate the neurophysiological underpinnings of such different perception, we tested two PSAs: one with a female character and one with a male character. Furthermore, the experimental sample was divided into men and women, as well as smokers and nonsmokers. The employed EEG indices were the mental engagement (ME: the ratio between beta activity and the sum of alpha and theta activity); the approach/withdrawal (AW: the frontal alpha asymmetry in the alpha band); and the frontal theta activity and the spectral asymmetry index (SASI: the ratio between beta minus theta and beta plus theta). Results suggested that the ME and the AW presented an opposite trend, with smokers showing higher ME and lower AW than nonsmokers. The ME and the frontal theta also evidenced a statistically significant interaction between the kind of the PSA and the gender of the observers; specifically, women showed higher ME and frontal theta activity for the male character PSA. This study then supports the usefulness of the ME and frontal theta for purposes of PSAs targeting on the basis of gender issues and of the ME and the AW and for purposes of PSAs targeting on the basis of smoking habits

    Evidence for the late MMN as a neurophysiological endophenotype for dyslexia.

    Get PDF
    Dyslexia affects 5-10% of school-aged children and is therefore one of the most common learning disorders. Research on auditory event related potentials (AERP), particularly the mismatch negativity (MMN) component, has revealed anomalies in individuals with dyslexia to speech stimuli. Furthermore, candidate genes for this disorder were found through molecular genetic studies. A current challenge for dyslexia research is to understand the interaction between molecular genetics and brain function, and to promote the identification of relevant endophenotypes for dyslexia. The present study examines MMN, a neurophysiological correlate of speech perception, and its potential as an endophenotype for dyslexia in three groups of children. The first group of children was clinically diagnosed with dyslexia, whereas the second group of children was comprised of their siblings who had average reading and spelling skills and were therefore "unaffected" despite having a genetic risk for dyslexia. The third group consisted of control children who were not related to the other groups and were also unaffected. In total, 225 children were included in the study. All children showed clear MMN activity to/da/-/ba/contrasts that could be separated into three distinct MMN components. Whilst the first two MMN components did not differentiate the groups, the late MMN component (300-700 ms) revealed significant group differences. The mean area of the late MMN was attenuated in both the dyslexic children and their unaffected siblings in comparison to the control children. This finding is indicative of analogous alterations of neurophysiological processes in children with dyslexia and those with a genetic risk for dyslexia, without a manifestation of the disorder. The present results therefore further suggest that the late MMN might be a potential endophenotype for dyslexia
    • …
    corecore