57,706 research outputs found

    Nano-scale reservoir computing

    Full text link
    This work describes preliminary steps towards nano-scale reservoir computing using quantum dots. Our research has focused on the development of an accumulator-based sensing system that reacts to changes in the environment, as well as the development of a software simulation. The investigated systems generate nonlinear responses to inputs that make them suitable for a physical implementation of a neural network. This development will enable miniaturisation of the neurons to the molecular level, leading to a range of applications including monitoring of changes in materials or structures. The system is based around the optical properties of quantum dots. The paper will report on experimental work on systems using Cadmium Selenide (CdSe) quantum dots and on the various methods to render the systems sensitive to pH, redox potential or specific ion concentration. Once the quantum dot-based systems are rendered sensitive to these triggers they can provide a distributed array that can monitor and transmit information on changes within the material.Comment: 8 pages, 9 figures, accepted for publication in Nano Communication Networks, http://www.journals.elsevier.com/nano-communication-networks/. An earlier version was presented at the 3rd IEEE International Workshop on Molecular and Nanoscale Communications (IEEE MoNaCom 2013

    Microfluidic-based Bacterial Molecular Computing on a Chip

    Get PDF
    Biocomputing systems based on engineered bacteria can lead to novel tools for environmental monitoring and detection of metabolic diseases. In this paper, we propose a Bacterial Molecular Computing on a Chip (BMCoC) using microfluidic and electrochemical sensing technologies. The computing can be flexibly integrated into the chip, but we focus on engineered bacterial AND Boolean logic gate and ON-OFF switch sensors that produces secondary signals to change the pH and dissolved oxygen concentrations. We present a prototype with experimental results that shows the electrochemical sensors can detect small pH and dissolved oxygen concentration changes created by the engineered bacterial populations’ molecular signals. Additionally, we present a theoretical model analysis of the BMCoC computation reliability when subjected to unwanted effects, i.e., molecular signal delays and noise, and electrochemical sensors threshold settings that are based on either standard or blind detectors. Our numerical analysis found that the variations in the production delay and the molecular output signal concentration can impact on the computation reliability for the AND logic gate and ON-OFF switch. The molecular communications of synthetic engineered cells for logic gates integrated with sensing systems can lead to a new breed of biochips that can be used for numerous diagnostic applications

    Application of compressed sensing to the simulation of atomic systems

    Full text link
    Compressed sensing is a method that allows a significant reduction in the number of samples required for accurate measurements in many applications in experimental sciences and engineering. In this work, we show that compressed sensing can also be used to speed up numerical simulations. We apply compressed sensing to extract information from the real-time simulation of atomic and molecular systems, including electronic and nuclear dynamics. We find that for the calculation of vibrational and optical spectra the total propagation time, and hence the computational cost, can be reduced by approximately a factor of five.Comment: 7 pages, 5 figure
    • …
    corecore