1,768 research outputs found

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    AI: Limits and Prospects of Artificial Intelligence

    Get PDF
    The emergence of artificial intelligence has triggered enthusiasm and promise of boundless opportunities as much as uncertainty about its limits. The contributions to this volume explore the limits of AI, describe the necessary conditions for its functionality, reveal its attendant technical and social problems, and present some existing and potential solutions. At the same time, the contributors highlight the societal and attending economic hopes and fears, utopias and dystopias that are associated with the current and future development of artificial intelligence

    Undergraduate Catalog of Studies, 2022-2023

    Get PDF

    Analog Photonics Computing for Information Processing, Inference and Optimisation

    Full text link
    This review presents an overview of the current state-of-the-art in photonics computing, which leverages photons, photons coupled with matter, and optics-related technologies for effective and efficient computational purposes. It covers the history and development of photonics computing and modern analogue computing platforms and architectures, focusing on optimization tasks and neural network implementations. The authors examine special-purpose optimizers, mathematical descriptions of photonics optimizers, and their various interconnections. Disparate applications are discussed, including direct encoding, logistics, finance, phase retrieval, machine learning, neural networks, probabilistic graphical models, and image processing, among many others. The main directions of technological advancement and associated challenges in photonics computing are explored, along with an assessment of its efficiency. Finally, the paper discusses prospects and the field of optical quantum computing, providing insights into the potential applications of this technology.Comment: Invited submission by Journal of Advanced Quantum Technologies; accepted version 5/06/202

    Integrated By Design: An Investigation into Solid-State Battery Processing & the Elucidation of Reaction Mechanisms

    Get PDF
    Among the portable electronics market, Li-ion batteries remain the preferred choice for many applications, due to their high specific energy. However, current battery technologies have flaws associated with both their chemistries, manufacturing methods and architecture. Battery and device architectures are regularly kept as separate entities during product design, and only put together in the final design, unnecessarily increasing device footprint, costs and weight. Herein, we explore an alternative approach to these limitations, by developing an integrated battery antenna system. The three main components of the battery: the cathode, the electrolyte and the anode are investigated with an aim to design an all-solid-state flexible, wearable, body conformable antenna battery system. Li2FeSiO4 is explored as a high capacity, environmentally benign cathode material. Utilizing in-operando XAS and ex-situ XRS to explore the origin of the materials' additional capacity associated with the removal of >1Li+ per unit formula. It is found that oxygen contributes, reversibly, as a charge compensation mechanism to the additional capacity. A PEGDA based solid polymer electrolyte membrane (PEM) is explored as a high performance, high conductivity, flexible, stretchable and thermally stable alternative to liquid electrolytes. The PEM is found to be stable up to 4.7V vs Li/Li+ and yield a conductivity of 1.4x10-3Scm-1, which places it securely into the "superionic" region. For the first time, this system has been applied to a full-cell configuration, yielding strong cycling performance throughout, with full-cell capacities reaching as high as 151mAhg-1at room temperature. PEDOT:PSS is a mixed conductive polymer, assessed as a potential anode material. The material was deposited using three different techniques:(I) tape casting (II) spray-coating (III) inkjet printing. It was found that cycling performance was heavily dependent on the manufacturing technique employed. Inkjet printed, binder free films exhibited the greatest performance with capacities stable across all 50 cycles tested. Finally, the PEDOT:PSS anode was incorporated into an on-body electronic device - an RFID antenna, utilizing the antenna architecture as a dual purpose component. The antenna powered by the integrated battery exhibited strong performance characteristics, matching those of a commercial coin cell battery

    Digital agriculture: research, development and innovation in production chains.

    Get PDF
    Digital transformation in the field towards sustainable and smart agriculture. Digital agriculture: definitions and technologies. Agroenvironmental modeling and the digital transformation of agriculture. Geotechnologies in digital agriculture. Scientific computing in agriculture. Computer vision applied to agriculture. Technologies developed in precision agriculture. Information engineering: contributions to digital agriculture. DIPN: a dictionary of the internal proteins nanoenvironments and their potential for transformation into agricultural assets. Applications of bioinformatics in agriculture. Genomics applied to climate change: biotechnology for digital agriculture. Innovation ecosystem in agriculture: Embrapa?s evolution and contributions. The law related to the digitization of agriculture. Innovating communication in the age of digital agriculture. Driving forces for Brazilian agriculture in the next decade: implications for digital agriculture. Challenges, trends and opportunities in digital agriculture in Brazil
    corecore