12 research outputs found

    Whole-body x-ray dark-field radiography of a human cadaver

    Get PDF
    Background!#!Grating-based x-ray dark-field and phase-contrast imaging allow extracting information about refraction and small-angle scatter, beyond conventional attenuation. A step towards clinical translation has recently been achieved, allowing further investigation on humans.!##!Methods!#!After the ethics committee approval, we scanned the full body of a human cadaver in anterior-posterior orientation. Six measurements were stitched together to form the whole-body image. All radiographs were taken at a three-grating large-object x-ray dark-field scanner, each lasting about 40 s. Signal intensities of different anatomical regions were assessed. The magnitude of visibility reduction caused by beam hardening instead of small-angle scatter was analysed using different phantom materials. Maximal effective dose was 0.3 mSv for the abdomen.!##!Results!#!Combined attenuation and dark-field radiography are technically possible throughout a whole human body. High signal levels were found in several bony structures, foreign materials, and the lung. Signal levels were 0.25 ± 0.13 (mean ± standard deviation) for the lungs, 0.08 ± 0.06 for the bones, 0.023 ± 0.019 for soft tissue, and 0.30 ± 0.02 for an antibiotic bead chain. We found that phantom materials, which do not produce small-angle scatter, can generate a strong visibility reduction signal.!##!Conclusion!#!We acquired a whole-body x-ray dark-field radiograph of a human body in few minutes with an effective dose in a clinical acceptable range. Our findings suggest that the observed visibility reduction in the bone and metal is dominated by beam hardening and that the true dark-field signal in the lung is therefore much higher than that of the bone

    Development of X-ray phase-contrast imaging techniques for medical diagnostics

    Get PDF
    The X-Ray phase-contrast techniques are innovative imaging methods allowing overtaking the limitations of classic radiology. In addition to the differential X-ray absorption on which standard radiology relies, in phase-contrast imaging the contrast is given by the effects of the refraction of X-rays inside the tissues. The combination of phase-contrast with quantitative computer tomography (CT) allows for a highly accurate reconstruction of the tissues’ index of refraction. Thanks to the high sensitivity of the method, tomographic images can be obtained at clinically compatible dose. For all these reasons phase-contrast imaging is a very promising approach, which can potentially revolutionize diagnostic X-Ray imaging. Several techniques are classified under the name of X-Ray phase-contrast imaging. This Thesis focused on the so-called analyzer-based imaging (ABI) method. ABI uses a perfect crystal, placed between the sample and the detector, to visualize the phase effects occurred within the sample. The quantitative reconstruction of the refraction index from CT data is not trivial and before this Thesis work it was documented only for small size objects. This Thesis has focused on two main scientific problems: (1) the development of theoretical and calculation strategies to determine the quantitative map of the refraction index of large biological tissues/organs (>10 cm) using the ABI technique; and (2) the preparation of accurate and efficient tools to estimate and simulate the dose deposited in CT imaging of large samples. For the determination of the refraction index, two CT geometries were considered and studied: the out-of-plane and the in-plane configurations. The first one, the most used in the works reported in the literature, foresees that the rotation axis of the sample occurs in a plane parallel to that of the sensitivity of the analyzer crystal; while, in the second CT geometry, the rotation axis is perpendicular to that plane. The theoretical study, technical design and experimental implementation of the in-plane geometry have been main tasks of this Thesis. A first experiment has been performed in order to compare the results obtained with in-plane quantitative phase contrast CT with the absorption-based CT ones. An improved accuracy and a better agreement with the theoretical density values have been obtained by exploiting the refraction effect while keeping the dose to sample low. A second campaign of experiments has been performed on large human breasts to investigate the efficiency of the in-plane and out-of-plane CT geometries and the performances of the associated image reconstruction procedures. The same experimental conditions were also studied by numerical simulations and the results were compared. This analysis shows that the in-plane geometry allows producing more accurate quantitative three dimensional maps of the index of refraction, while the out-of-plane case is preferable for qualitative investigations. A study for developing advanced procedures for improving the quality of the obtained CT images has been also conducted. As a result, a two-step procedure has been tested and identified: first the noise level of the experimental images is reduced by applying a wavelet decomposition algorithm and then a deconvolution procedure. The obtained images show an enhanced sharpness of the interfaces and of the object edges and high signal to noise ratio values are preserved. The second problem of this Thesis was to find strategies to calculate, in a fast way, the delivered dose in CT imaging of complex biological samples. For this purpose an acceleration method to speed-up the convergence of Monte Carlo simulations based on the Track Length Estimator method has been computed and included in the open-source software GATE. Results show that this method can lead to the same accuracy of conventional Monte Carlo methods while reducing the required computation time of up to two orders of magnitude, with the respect to the considered geometry. A database of dose curves for the case of monochromatic breast CT has been produced: it allows for a quick estimation of the delivered dose. A way to choose the best energy and the optimal photon flux was also proposed, which leads to a significant reduction of the delivered dose without any loss in terms of image quality. Most of the experimental and data reconstruction methods developed within this Thesis work can be applied also to other phase-contrast techniques. This Thesis shows that high resolution three dimensional diagnostic imaging of large and complex biological organs can, in principle, be performed at clinical compatible doses; this is the most significant contribution of the Thesis towards the clinical implementation of phase-contrast CT.Auf Phasenkontrast basierende Röntgentechniken sind innovative bildgebende Methoden, welche die Limitierungen der klassischen Radiologie überschreiten. Auβer der differentiellen Röntgenabsorption, auf der die herkömmliche Radiologie beruht, ist der Kontrast bei Phasenkontrast-Bildgebung durch die Brechungseffekte der Röntgenstrahlen innerhalb eines Gewebes gegeben. Die Kombination zwischen Phasenkontrast und quantitativer Computertomographie (CT) erlaubt eine höchstgenaue Rekonstruktion der Brechzahl der Gewebe. Aufgrund der hohen Empfindlichkeit dieser Methode, können tomographische Bilder mit einer klinisch verträglichen Dosis erzeugt werden. Aus all diesen Gründen, stellt Phasenkontrast-Bildgebung einen vielversprechenden Ansatz dar, welcher die diagnostische Röntgenbildgebung revolutionieren könnte. Verschiedene röntgenbildgebende Techniken werden als Phasenkontrast-Verfahren bezeichnet. Die vorliegende Doktorarbeit befasst sich mit der sogenannten Bildgebungsmethode mithilfe eines Analysatorkristalls (auf englisch: analyser-based imaging (ABI) ). ABI benutzt ein perfektes, zwischen der Probe und dem Detektor angeordnetes Kristall, um in der Probe stattfindenden Phaseneffekte zu veranschaulichen. Die quantitative Rekonstruktion des Brechungsindizes aus den CT-Daten ist jedoch nicht trivial und war vor dieser Arbeit nur für kleine Gegenstände beschrieben. Im Mittelpunkt dieser Dissertation stehen folgende wissenschaftliche Fragestellungen: (1) die Entwicklung theoretischer und rechnerischer Strategien, um die quantitative räumliche Verteilung des Brechungsindizes in größeren Organen aus biologischen Geweben (10 cm) unter Verwendung der ABI-Technik zu bilden und (2) die Vorbereitung von genauen und leistungsfähigen Rechenmitteln zur Abschätzung und Simulation der in größeren Proben bei einem CT-Bildgebungsversuch abgelagerten Strahlendosis zu treffen. Für die Bestimmung des Brechungsindizes wurden zwei geometrische Anordnungen in Betracht gezogen und untersucht, und zwar die Konfiguration auβerhalb (out-of-plane) bzw. in der Ebene (in-plane) der Probe. Erstere wird am häufigsten in der Fachliteratur zitiert und sieht vor, dass die Probe-Drehachse sich in der parallelen Ebene zur Achse des Analysatorkristalls befindet, wobei in der zweiteren Geometrie die Drehachse orthogonal zu jener Ebene ist. Die theoretische Studie, der technische Entwurf und die experimentelle Umsetzung der geometrischen Anordnung in der Probe-Ebene stellen die Hauptaufgaben dieser Arbeit dar. Ein erstes Experiment wurde durchgeführt, um die durch quantitative Phasenkontrast-CT nach in-plane-Modus erlangten Ergebnisse mit entsprechenden, auf Absorption basierenden CT-Versuchen zu vergleichen. Eine höhere Genauigkeit sowie eine bessere Übereinstimmung mit den theoretischen Dichtewerten wurden dadurch erzielt, dass man sich die Brechungseffekte zunutze macht, indem man die an die Probe gelieferte Dosis niedrig hält. Eine zweite Versuchsreihe wurde auβerdem auf menschliche Brüste ausgeführt, um die Effizienz sowohl der in-plane- als auch der out-of-plane-CT-Geometrien sowie die Leistungsfähigeit der entsprechenden Bildrekonstruktionsverfahren zu überprüfen. Die gleichen Experimentalbedingungen wurden auch anhand von numerischen Simulationen untersucht und die Ergebnisse miteinander verglichen. Diese Analyse zeigt, dass die in-plane-Geometrie die Erstellung genauerer dreidimensionaler Verteilungen der Brechzahl ermöglicht, während der out-of-plane-Fall eher für die Zwecke qualitativer Untersuchungen vorzuziehen ist. Fortschrittliche Prozeduren zur Verbesserung der Qualität von aufgezeichneten CT-Bildern wurden im Rahmen dieser Doktorarbeit konzipiert und entwickelt. Das Fazit: eine zweistufige Vorgehensweise wurde ermittelt und geprüft. Zunächst wird der Rauschpegel der Meβdaten über die Anwendung eines Zerlegungsalgorithmus mittels Wavelets gesenkt, anschlieβend gefolgt von einem Entfaltung-Verfahren. Die damit gewonnenen Bilder weisen eine erhöhte Schärfe der Schnittstellen auf. Die Objektkanten und das Signal-zu-Rausch-Verhältnis bleiben damit erhalten. Die zweite Fragestellung dieser Arbeit war es, Lösungansätze zu erarbeiten, um die während CT-Bildgebung-Messungen über complexe biologische Proben abgegebene Dosis möglichst rapide zu berechnen. Zu diesem Zweck wurde ein Verfahren zur Beschleunigung der Konvergenz von Monte-Carlo-Simulationen auf der Grundlage der Track-Length-Estimator-Methode entwickelt und in die Open-Source-Software GATE eingegliedert. Die bisherigen Ergebnisse zeigen, dass dieses Verfahren zur selben Genauigkeit der herkömmlichen Monte-Carlo-Methoden bei gleichzeitiger Minderung bis zu zwei Gröβenordnungen der zur Berechnung einer und der selben Geometrie notwendigen Rechenzeit führt. Eine Datenbank von Dosiskurven für den Fall von monochromatischer Brust-CT ist erzeugt worden, die eine schnelle Schätzung der abgegebenen Dosis erlaubt. Darüber hinaus wurde ein Lösungsweg zur Auswahl der besten Energie und des optimalen Photonenflusses vorgeschlagen, welcher eine bedeutende Abnahme der abgelieferten Dosis zur Folge hat, und zwar ohne Bildqualitätsverluste. Die meisten, im Rahmen dieser Doktorarbeit entwickelten Experimental- und Datenrekonstruktion-Verfahren können freilich auch an andere Phasenkontrast-Techniken angewendet werden. Es wird hiermit gezeigt, dass hochauflösende dreidimensionale bildgebende Verfahren zur Diagnostik gröβerer und komplexer biologischer Gegenstände bei klinisch verträglichen Dosen grundsätzlich eingesetzt werden können. Dies ist der nennenwerteste Beitrag dieser Dissertation zur klinischen Umsetzung der Phasenkontrast-CT

    Development of X-ray phase-contrast imaging techniques for medical diagnostics

    Get PDF
    The X-Ray phase-contrast techniques are innovative imaging methods allowing overtaking the limitations of classic radiology. In addition to the differential X-ray absorption on which standard radiology relies, in phase-contrast imaging the contrast is given by the effects of the refraction of X-rays inside the tissues. The combination of phase-contrast with quantitative computer tomography (CT) allows for a highly accurate reconstruction of the tissues’ index of refraction. Thanks to the high sensitivity of the method, tomographic images can be obtained at clinically compatible dose. For all these reasons phase-contrast imaging is a very promising approach, which can potentially revolutionize diagnostic X-Ray imaging. Several techniques are classified under the name of X-Ray phase-contrast imaging. This Thesis focused on the so-called analyzer-based imaging (ABI) method. ABI uses a perfect crystal, placed between the sample and the detector, to visualize the phase effects occurred within the sample. The quantitative reconstruction of the refraction index from CT data is not trivial and before this Thesis work it was documented only for small size objects. This Thesis has focused on two main scientific problems: (1) the development of theoretical and calculation strategies to determine the quantitative map of the refraction index of large biological tissues/organs (>10 cm) using the ABI technique; and (2) the preparation of accurate and efficient tools to estimate and simulate the dose deposited in CT imaging of large samples. For the determination of the refraction index, two CT geometries were considered and studied: the out-of-plane and the in-plane configurations. The first one, the most used in the works reported in the literature, foresees that the rotation axis of the sample occurs in a plane parallel to that of the sensitivity of the analyzer crystal; while, in the second CT geometry, the rotation axis is perpendicular to that plane. The theoretical study, technical design and experimental implementation of the in-plane geometry have been main tasks of this Thesis. A first experiment has been performed in order to compare the results obtained with in-plane quantitative phase contrast CT with the absorption-based CT ones. An improved accuracy and a better agreement with the theoretical density values have been obtained by exploiting the refraction effect while keeping the dose to sample low. A second campaign of experiments has been performed on large human breasts to investigate the efficiency of the in-plane and out-of-plane CT geometries and the performances of the associated image reconstruction procedures. The same experimental conditions were also studied by numerical simulations and the results were compared. This analysis shows that the in-plane geometry allows producing more accurate quantitative three dimensional maps of the index of refraction, while the out-of-plane case is preferable for qualitative investigations. A study for developing advanced procedures for improving the quality of the obtained CT images has been also conducted. As a result, a two-step procedure has been tested and identified: first the noise level of the experimental images is reduced by applying a wavelet decomposition algorithm and then a deconvolution procedure. The obtained images show an enhanced sharpness of the interfaces and of the object edges and high signal to noise ratio values are preserved. The second problem of this Thesis was to find strategies to calculate, in a fast way, the delivered dose in CT imaging of complex biological samples. For this purpose an acceleration method to speed-up the convergence of Monte Carlo simulations based on the Track Length Estimator method has been computed and included in the open-source software GATE. Results show that this method can lead to the same accuracy of conventional Monte Carlo methods while reducing the required computation time of up to two orders of magnitude, with the respect to the considered geometry. A database of dose curves for the case of monochromatic breast CT has been produced: it allows for a quick estimation of the delivered dose. A way to choose the best energy and the optimal photon flux was also proposed, which leads to a significant reduction of the delivered dose without any loss in terms of image quality. Most of the experimental and data reconstruction methods developed within this Thesis work can be applied also to other phase-contrast techniques. This Thesis shows that high resolution three dimensional diagnostic imaging of large and complex biological organs can, in principle, be performed at clinical compatible doses; this is the most significant contribution of the Thesis towards the clinical implementation of phase-contrast CT.Auf Phasenkontrast basierende Röntgentechniken sind innovative bildgebende Methoden, welche die Limitierungen der klassischen Radiologie überschreiten. Auβer der differentiellen Röntgenabsorption, auf der die herkömmliche Radiologie beruht, ist der Kontrast bei Phasenkontrast-Bildgebung durch die Brechungseffekte der Röntgenstrahlen innerhalb eines Gewebes gegeben. Die Kombination zwischen Phasenkontrast und quantitativer Computertomographie (CT) erlaubt eine höchstgenaue Rekonstruktion der Brechzahl der Gewebe. Aufgrund der hohen Empfindlichkeit dieser Methode, können tomographische Bilder mit einer klinisch verträglichen Dosis erzeugt werden. Aus all diesen Gründen, stellt Phasenkontrast-Bildgebung einen vielversprechenden Ansatz dar, welcher die diagnostische Röntgenbildgebung revolutionieren könnte. Verschiedene röntgenbildgebende Techniken werden als Phasenkontrast-Verfahren bezeichnet. Die vorliegende Doktorarbeit befasst sich mit der sogenannten Bildgebungsmethode mithilfe eines Analysatorkristalls (auf englisch: analyser-based imaging (ABI) ). ABI benutzt ein perfektes, zwischen der Probe und dem Detektor angeordnetes Kristall, um in der Probe stattfindenden Phaseneffekte zu veranschaulichen. Die quantitative Rekonstruktion des Brechungsindizes aus den CT-Daten ist jedoch nicht trivial und war vor dieser Arbeit nur für kleine Gegenstände beschrieben. Im Mittelpunkt dieser Dissertation stehen folgende wissenschaftliche Fragestellungen: (1) die Entwicklung theoretischer und rechnerischer Strategien, um die quantitative räumliche Verteilung des Brechungsindizes in größeren Organen aus biologischen Geweben (10 cm) unter Verwendung der ABI-Technik zu bilden und (2) die Vorbereitung von genauen und leistungsfähigen Rechenmitteln zur Abschätzung und Simulation der in größeren Proben bei einem CT-Bildgebungsversuch abgelagerten Strahlendosis zu treffen. Für die Bestimmung des Brechungsindizes wurden zwei geometrische Anordnungen in Betracht gezogen und untersucht, und zwar die Konfiguration auβerhalb (out-of-plane) bzw. in der Ebene (in-plane) der Probe. Erstere wird am häufigsten in der Fachliteratur zitiert und sieht vor, dass die Probe-Drehachse sich in der parallelen Ebene zur Achse des Analysatorkristalls befindet, wobei in der zweiteren Geometrie die Drehachse orthogonal zu jener Ebene ist. Die theoretische Studie, der technische Entwurf und die experimentelle Umsetzung der geometrischen Anordnung in der Probe-Ebene stellen die Hauptaufgaben dieser Arbeit dar. Ein erstes Experiment wurde durchgeführt, um die durch quantitative Phasenkontrast-CT nach in-plane-Modus erlangten Ergebnisse mit entsprechenden, auf Absorption basierenden CT-Versuchen zu vergleichen. Eine höhere Genauigkeit sowie eine bessere Übereinstimmung mit den theoretischen Dichtewerten wurden dadurch erzielt, dass man sich die Brechungseffekte zunutze macht, indem man die an die Probe gelieferte Dosis niedrig hält. Eine zweite Versuchsreihe wurde auβerdem auf menschliche Brüste ausgeführt, um die Effizienz sowohl der in-plane- als auch der out-of-plane-CT-Geometrien sowie die Leistungsfähigeit der entsprechenden Bildrekonstruktionsverfahren zu überprüfen. Die gleichen Experimentalbedingungen wurden auch anhand von numerischen Simulationen untersucht und die Ergebnisse miteinander verglichen. Diese Analyse zeigt, dass die in-plane-Geometrie die Erstellung genauerer dreidimensionaler Verteilungen der Brechzahl ermöglicht, während der out-of-plane-Fall eher für die Zwecke qualitativer Untersuchungen vorzuziehen ist. Fortschrittliche Prozeduren zur Verbesserung der Qualität von aufgezeichneten CT-Bildern wurden im Rahmen dieser Doktorarbeit konzipiert und entwickelt. Das Fazit: eine zweistufige Vorgehensweise wurde ermittelt und geprüft. Zunächst wird der Rauschpegel der Meβdaten über die Anwendung eines Zerlegungsalgorithmus mittels Wavelets gesenkt, anschlieβend gefolgt von einem Entfaltung-Verfahren. Die damit gewonnenen Bilder weisen eine erhöhte Schärfe der Schnittstellen auf. Die Objektkanten und das Signal-zu-Rausch-Verhältnis bleiben damit erhalten. Die zweite Fragestellung dieser Arbeit war es, Lösungansätze zu erarbeiten, um die während CT-Bildgebung-Messungen über complexe biologische Proben abgegebene Dosis möglichst rapide zu berechnen. Zu diesem Zweck wurde ein Verfahren zur Beschleunigung der Konvergenz von Monte-Carlo-Simulationen auf der Grundlage der Track-Length-Estimator-Methode entwickelt und in die Open-Source-Software GATE eingegliedert. Die bisherigen Ergebnisse zeigen, dass dieses Verfahren zur selben Genauigkeit der herkömmlichen Monte-Carlo-Methoden bei gleichzeitiger Minderung bis zu zwei Gröβenordnungen der zur Berechnung einer und der selben Geometrie notwendigen Rechenzeit führt. Eine Datenbank von Dosiskurven für den Fall von monochromatischer Brust-CT ist erzeugt worden, die eine schnelle Schätzung der abgegebenen Dosis erlaubt. Darüber hinaus wurde ein Lösungsweg zur Auswahl der besten Energie und des optimalen Photonenflusses vorgeschlagen, welcher eine bedeutende Abnahme der abgelieferten Dosis zur Folge hat, und zwar ohne Bildqualitätsverluste. Die meisten, im Rahmen dieser Doktorarbeit entwickelten Experimental- und Datenrekonstruktion-Verfahren können freilich auch an andere Phasenkontrast-Techniken angewendet werden. Es wird hiermit gezeigt, dass hochauflösende dreidimensionale bildgebende Verfahren zur Diagnostik gröβerer und komplexer biologischer Gegenstände bei klinisch verträglichen Dosen grundsätzlich eingesetzt werden können. Dies ist der nennenwerteste Beitrag dieser Dissertation zur klinischen Umsetzung der Phasenkontrast-CT

    X-ray Phase Contrast Tomography : Setup and Scintillator Development

    Get PDF
    X-ray microscopy and micro-tomography (μCT) are valuable non-destructive examination methods in many disciplines such as bio-medical research, archaeometry, material science and paleontology. Besides being implemented at synchrotrons radiation sources, laboratory setups using an X-ray tube and high-resolution scintillation detector routinely provide information on the micrometre scale. To improve the image contrast for small and low-density samples, it is possible to introduce a propagation distance between sample and detector to perform propagation-based phase contrast imaging (PB-PCI). This contrast mode relies on a sufficiently coherent illumination and is characterised by the appearance of an additional intensity modulations (‘edge enhancement fringes’) around interfaces in the image. The strength of this effect depends on hardware as well as geometry parameters. This thesis describes the development of a laboratory setup for X-ray μCT with a PB-PCI option. It contains the theoretical and technical background of the setup design as well the characterization of the achieved performance.Moreover, the optimization of the PB-PCI geometry was explored both theoretically as well as experimentally for three different setups. A simple rule for finding the optimal magnification to achieve high phase contrast for edge features was deduced. The effect of the polychromatic source spectrum und detector sensitivity was identified and included into the theoretical model.Besides application and methodological studies, the setup was used to test and characterise new X-ray scintillator materials. Recently, metal halide perovskite nanocrystals (MHP NCs) have gained attention due to their outstanding opto-electronic performance. The main challenge for their use and commercialization is their low long-term stability against humidity, temperature, and light exposure. Here, a CsPbBr3 scintillator comprised of an ordered array of nanowires (NW) in an anodized aluminium oxide (AAO) membrane is presented as a promising new scintillator for X-ray microscopy and μCT. It shows a high light yield under X-ray exposure which improves with smaller NW diameter and higher NW length. In contrast to many other MHP materials this scintillator shows good stability under continuous X-ray exposure and changing environmental conditions over extended time spans of several weeks. This makes it suitable for tomography, which is demonstrated by acquiring the first high-resolution tomogram using a MHP scintillator with the presented laboratory setup

    Cultivate Quantitative Magnetic Resonance Imaging Methods to Measure Markers of Health and Translate to Large Scale Cohort Studies

    Get PDF
    Magnetic Resonance Imaging (MRI) is an indispensable tool in healthcare and research, with a growing demand for its services. The appeal of MRI stems from its non-ionizing radiation nature, ability to generate high-resolution images of internal organs and structures without invasive procedures, and capacity to provide quantitative assessments of tissue properties such as ectopic fat, body composition, and organ volume. All without long term side effects. Nine published papers are submitted which show the cultivation of quantitative measures of ectopic fat within the liver and pancreas using MRI, and the process of validating whole-body composition and organ volume measurements. All these techniques have been translated into large-scale studies to improve health measurements in large population cohorts. Translating this work into large-scale studies, including the use of artificial intelligence, is included. Additionally, an evaluation accompanies these published studies, appraising the evolution of these quantitative MRI techniques from the conception to their application in large cohort studies. Finally, this appraisal provides a summary of future work on crowdsourcing of ground truth training data to facilitate its use in wider applications of artificial intelligence.In conclusion, this body of work presents a portfolio of evidence to fulfil the requirements of a PhD by published works at the University of Salford

    Across Space and Time. Papers from the 41st Conference on Computer Applications and Quantitative Methods in Archaeology, Perth, 25-28 March 2013

    Get PDF
    This volume presents a selection of the best papers presented at the forty-first annual Conference on Computer Applications and Quantitative Methods in Archaeology. The theme for the conference was "Across Space and Time", and the papers explore a multitude of topics related to that concept, including databases, the semantic Web, geographical information systems, data collection and management, and more

    Microscopy Conference 2017 (MC 2017) - Proceedings

    Get PDF
    Das Dokument enthält die Kurzfassungen der Beiträge aller Teilnehmer an der Mikroskopiekonferenz "MC 2017", die vom 21. bis 25.08.2017, in Lausanne stattfand

    Microscopy Conference 2017 (MC 2017) - Proceedings

    Get PDF
    Das Dokument enthält die Kurzfassungen der Beiträge aller Teilnehmer an der Mikroskopiekonferenz "MC 2017", die vom 21. bis 25.08.2017, in Lausanne stattfand

    Across Space and Time Papers from the 41st Conference on Computer Applications and Quantitative Methods in Archaeology, Perth, 25-28 March 2013

    Get PDF
    The present volume includes 50 selected peer-reviewed papers presented at the 41st Computer Applications and Quantitative Methods in Archaeology Across Space and Time (CAA2013) conference held in Perth (Western Australia) in March 2013 at the University Club of Western Australia and hosted by the recently established CAA Australia National Chapter. It also hosts a paper presented at the 40th Computer Applications and Quantitative Methods in Archaeology (CAA2012) conference held in Southampton
    corecore