9,640 research outputs found

    An Interactive Environment for Supporting the Transition from Simulation to Optimization

    Get PDF

    An XML representation of DAE systems obtained fromcontinuous-time Modelica models

    Get PDF
    This contribution outlines an XML format for representation of differential-algebraic equations (DAE) models obtained from continuous time Modelica models and possibly also from other equation-based modeling languages. The purpose is to offer a standardized model exchange format which is based on the DAE formalism and which is neutral with respect to model usage. Many usages of models go beyond what can be obtained from an execution interface offering evaluation of the model equations for simulation purposes. Several such usages arise in the area of control engineering, where dynamic optimization, Linear Fractional Transformations (LFTs), derivation of robotic controllers, model order reduction, and real time code generation are some examples. The choice of XML is motivated by its de facto standard status and the availability of free and efficient tools. Also, the XSLT language enables a convenient specification of the transformation of the XML model representation into other formats

    Automatic differentiation in machine learning: a survey

    Get PDF
    Derivatives, mostly in the form of gradients and Hessians, are ubiquitous in machine learning. Automatic differentiation (AD), also called algorithmic differentiation or simply "autodiff", is a family of techniques similar to but more general than backpropagation for efficiently and accurately evaluating derivatives of numeric functions expressed as computer programs. AD is a small but established field with applications in areas including computational fluid dynamics, atmospheric sciences, and engineering design optimization. Until very recently, the fields of machine learning and AD have largely been unaware of each other and, in some cases, have independently discovered each other's results. Despite its relevance, general-purpose AD has been missing from the machine learning toolbox, a situation slowly changing with its ongoing adoption under the names "dynamic computational graphs" and "differentiable programming". We survey the intersection of AD and machine learning, cover applications where AD has direct relevance, and address the main implementation techniques. By precisely defining the main differentiation techniques and their interrelationships, we aim to bring clarity to the usage of the terms "autodiff", "automatic differentiation", and "symbolic differentiation" as these are encountered more and more in machine learning settings.Comment: 43 pages, 5 figure

    AI Enhanced Control Engineering Methods

    Full text link
    AI and machine learning based approaches are becoming ubiquitous in almost all engineering fields. Control engineering cannot escape this trend. In this paper, we explore how AI tools can be useful in control applications. The core tool we focus on is automatic differentiation. Two immediate applications are linearization of system dynamics for local stability analysis or for state estimation using Kalman filters. We also explore other usages such as conversion of differential algebraic equations to ordinary differential equations for control design. In addition, we explore the use of machine learning models for global parameterizations of state vectors and control inputs in model predictive control applications. For each considered use case, we give examples and results

    An XML representation of DAE systems obtained from continuous-time Modelica models

    Get PDF
    This contribution outlines an XML format for representation of differential-algebraic equations (DAE) models obtained from continuous time Modelica models and possibly also from other equation-based modeling languages. The purpose is to offer a standardized model exchange format which is based on the DAE formalism and which is neutral with respect to model usage. Many usages of models go beyond what can be obtained from an execution interface offering evaluation of the model equations for simulation purposes. Several such usages arise in the area of control engineering, where dynamic optimization, Linear Fractional Transformations (LFTs), derivation of robotic controllers, model order reduction, and real time code generation are some examples. The choice of XML is motivated by its de facto standard status and the availability of free and efficient tools. Also, the XSLT language enables a convenient specification of the transformation of the XML model representation into other formats

    Integration of different models in the design of chemical processes: Application to the design of a power plant

    Get PDF
    With advances in the synthesis and design of chemical processes there is an increasing need for more complex mathematical models with which to screen the alternatives that constitute accurate and reliable process models. Despite the wide availability of sophisticated tools for simulation, optimization and synthesis of chemical processes, the user is frequently interested in using the ‘best available model’. However, in practice, these models are usually little more than a black box with a rigid input–output structure. In this paper we propose to tackle all these models using generalized disjunctive programming to capture the numerical characteristics of each model (in equation form, modular, noisy, etc.) and to deal with each of them according to their individual characteristics. The result is a hybrid modular–equation based approach that allows synthesizing complex processes using different models in a robust and reliable way. The capabilities of the proposed approach are discussed with a case study: the design of a utility system power plant that has been decomposed into its constitutive elements, each treated differently numerically. And finally, numerical results and conclusions are presented.Spanish Ministry of Science and Innovation (CTQ2012-37039-C02-02)

    M-OFDFT: Overcoming the Barrier of Orbital-Free Density Functional Theory for Molecular Systems Using Deep Learning

    Full text link
    Orbital-free density functional theory (OFDFT) is a quantum chemistry formulation that has a lower cost scaling than the prevailing Kohn-Sham DFT, which is increasingly desired for contemporary molecular research. However, its accuracy is limited by the kinetic energy density functional, which is notoriously hard to approximate for non-periodic molecular systems. In this work, we propose M-OFDFT, an OFDFT approach capable of solving molecular systems using a deep-learning functional model. We build the essential nonlocality into the model, which is made affordable by the concise density representation as expansion coefficients under an atomic basis. With techniques to address unconventional learning challenges therein, M-OFDFT achieves a comparable accuracy with Kohn-Sham DFT on a wide range of molecules untouched by OFDFT before. More attractively, M-OFDFT extrapolates well to molecules much larger than those in training, which unleashes the appealing scaling for studying large molecules including proteins, representing an advancement of the accuracy-efficiency trade-off frontier in quantum chemistry

    Operations research software descriptions, vol. 1

    Get PDF

    The OpenModelica integrated environment for modeling, simulation, and model-based development

    Get PDF
    OpenModelica is a unique large-scale integrated open-source Modelica- and FMI-based modeling, simulation, optimization, model-based analysis and development environment. Moreover, the OpenModelica environment provides a number of facilities such as debugging; optimization; visualization and 3D animation; web-based model editing and simulation; scripting from Modelica, Python, Julia, and Matlab; efficient simulation and co-simulation of FMI-based models; compilation for embedded systems; Modelica- UML integration; requirement verification; and generation of parallel code for multi-core architectures. The environment is based on the equation-based object-oriented Modelica language and currently uses the MetaModelica extended version of Modelica for its model compiler implementation. This overview paper gives an up-to-date description of the capabilities of the system, short overviews of used open source symbolic and numeric algorithms with pointers to published literature, tool integration aspects, some lessons learned, and the main vision behind its development.Fil: Fritzson, Peter. Linköping University; SueciaFil: Pop, Adrian. Linköping University; SueciaFil: Abdelhak, Karim. Fachhochschule Bielefeld; AlemaniaFil: Asghar, Adeel. Linköping University; SueciaFil: Bachmann, Bernhard. Fachhochschule Bielefeld; AlemaniaFil: Braun, Willi. Fachhochschule Bielefeld; AlemaniaFil: Bouskela, Daniel. Electricité de France; FranciaFil: Braun, Robert. Linköping University; SueciaFil: Buffoni, Lena. Linköping University; SueciaFil: Casella, Francesco. Politecnico di Milano; ItaliaFil: Castro, Rodrigo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Franke, Rüdiger. Abb Group; AlemaniaFil: Fritzson, Dag. Linköping University; SueciaFil: Gebremedhin, Mahder. Linköping University; SueciaFil: Heuermann, Andreas. Linköping University; SueciaFil: Lie, Bernt. University of South-Eastern Norway; NoruegaFil: Mengist, Alachew. Linköping University; SueciaFil: Mikelsons, Lars. Linköping University; SueciaFil: Moudgalya, Kannan. Indian Institute Of Technology Bombay; IndiaFil: Ochel, Lennart. Linköping University; SueciaFil: Palanisamy, Arunkumar. Linköping University; SueciaFil: Ruge, Vitalij. Fachhochschule Bielefeld; AlemaniaFil: Schamai, Wladimir. Danfoss Power Solutions GmbH & Co; AlemaniaFil: Sjolund, Martin. Linköping University; SueciaFil: Thiele, Bernhard. Linköping University; SueciaFil: Tinnerholm, John. Linköping University; SueciaFil: Ostlund, Per. Linköping University; Sueci
    corecore