17,566 research outputs found

    Deep Learning Framework for Wireless Systems: Applications to Optical Wireless Communications

    Full text link
    Optical wireless communication (OWC) is a promising technology for future wireless communications owing to its potentials for cost-effective network deployment and high data rate. There are several implementation issues in the OWC which have not been encountered in radio frequency wireless communications. First, practical OWC transmitters need an illumination control on color, intensity, and luminance, etc., which poses complicated modulation design challenges. Furthermore, signal-dependent properties of optical channels raise non-trivial challenges both in modulation and demodulation of the optical signals. To tackle such difficulties, deep learning (DL) technologies can be applied for optical wireless transceiver design. This article addresses recent efforts on DL-based OWC system designs. A DL framework for emerging image sensor communication is proposed and its feasibility is verified by simulation. Finally, technical challenges and implementation issues for the DL-based optical wireless technology are discussed.Comment: To appear in IEEE Communications Magazine, Special Issue on Applications of Artificial Intelligence in Wireless Communication

    Energy Efficient Adaptive Network Coding Schemes for Satellite Communications

    Full text link
    In this paper, we propose novel energy efficient adaptive network coding and modulation schemes for time variant channels. We evaluate such schemes under a realistic channel model for open area environments and Geostationary Earth Orbit (GEO) satellites. Compared to non-adaptive network coding and adaptive rate efficient network-coded schemes for time variant channels, we show that our proposed schemes, through physical layer awareness can be designed to transmit only if a target quality of service (QoS) is achieved. As a result, such schemes can provide remarkable energy savings.Comment: Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 24 March 201

    Massive MIMO with Non-Ideal Arbitrary Arrays: Hardware Scaling Laws and Circuit-Aware Design

    Get PDF
    Massive multiple-input multiple-output (MIMO) systems are cellular networks where the base stations (BSs) are equipped with unconventionally many antennas, deployed on co-located or distributed arrays. Huge spatial degrees-of-freedom are achieved by coherent processing over these massive arrays, which provide strong signal gains, resilience to imperfect channel knowledge, and low interference. This comes at the price of more infrastructure; the hardware cost and circuit power consumption scale linearly/affinely with the number of BS antennas NN. Hence, the key to cost-efficient deployment of large arrays is low-cost antenna branches with low circuit power, in contrast to today's conventional expensive and power-hungry BS antenna branches. Such low-cost transceivers are prone to hardware imperfections, but it has been conjectured that the huge degrees-of-freedom would bring robustness to such imperfections. We prove this claim for a generalized uplink system with multiplicative phase-drifts, additive distortion noise, and noise amplification. Specifically, we derive closed-form expressions for the user rates and a scaling law that shows how fast the hardware imperfections can increase with NN while maintaining high rates. The connection between this scaling law and the power consumption of different transceiver circuits is rigorously exemplified. This reveals that one can make the circuit power increase as N\sqrt{N}, instead of linearly, by careful circuit-aware system design.Comment: Accepted for publication in IEEE Transactions on Wireless Communications, 16 pages, 8 figures. The results can be reproduced using the following Matlab code: https://github.com/emilbjornson/hardware-scaling-law
    corecore