188 research outputs found

    Satellite fixed communications service: A forecast of potential domestic demand through the year 2000. Volume 3: Appendices

    Get PDF
    Voice applications, data applications, video applications, impacted baseline forecasts, market distribution model, net long haul forecasts, trunking earth station definition and costs, trunking space segment cost, trunking entrance/exit links, trunking network costs and crossover distances with terrestrial tariffs, net addressable forecasts, capacity requirements, improving spectrum utilization, satellite system market development, and the 30/20 net accessible market are considered

    Digital implementation of an upstream DOCSIS QAM modulator and channel emulator

    Get PDF
    The concept of cable television, originally called community antenna television (CATV), began in the 1940's. The information and services provided by cable operators have changed drastically since the early days. Cable service providers are no longer simply providing their customers with broadcast television but are providing a multi-purpose, two-way link to the digital world. Custom programming, telephone service, radio, and high-speed internet access are just a few of the services offered by cable service providers in the 21st century. At the dawn of the internet the dominant mode of access was through telephone lines. Despite advances in dial-up modem technology, the telephone system was unable to keep pace with the demand for data throughput. In the late 1990's an industry consortium known as Cable Television Laboratories, Inc. developed a standard protocol for providing high-speed internet access through the existing CATV infrastructure. This protocol is known as Data Over Cable Service Interface Specification (DOCSIS) and it helped to usher in the era of the information superhighway. CATV systems use different parts of the radio frequency (RF) spectrum for communication to and from the user. The downstream portion (data destined for the user) consumes the bulk of the spectrum and is located at relatively high frequencies. The upstream portion (data destined to the network from the user) of the spectrum is smaller and located at the low end of the spectrum. This lower frequency region of the RF spectrum is particularly prone to impairments such as micro-reflections, which can be viewed as a type of multipath interference. Upstream data transfer in the presence of these impairments is therefore problematic and requires complex signal correction algorithms to be employed in the receiver. The quality of a receiver is largely determined by how well it mitigates the signal impairments introduced by the channel. For this reason, engineers developing a receiver require a piece of equipment that can emulate the channel impairments in any permutation in order to test their receiver. The conventional test methodology uses a hardware RF channel emulator connected between the transmitter and the receiver under test. This method not only requires an expensive RF channel emulator, but a functioning analog front-end as well. Of these two problems, the expense of the hardware emulator is likely less important than the delay in development caused by waiting for a functional analog front-end. Receiver design is an iterative, time consuming process that requires the receiver's digital signal processing (DSP) algorithms be tested as early as possible to reduce the time-to-market. This thesis presents a digital implementation of a DOCSIS-compliant channel emulator whereby cable micro-reflections and thermal noise at the analog front-end of the receiver are modelled digitally at baseband. The channel emulator and the modulator are integrated into a single hardware structure to produce a compact circuit that, during receiver testing, resides inside the same field programmable gate array (FPGA) as the receiver. This approach removes the dependence on the analog front-end allowing it to be developed concurrently with the receiver's DSP circuits, thus reducing the time-to-market. The approach taken in this thesis produces a fully programmable channel emulator that can be loaded onto FPGAs as needed by engineers working independently on different receiver designs. The channel emulator uses 3 independent data streams to produce a 3-channel signal, whereby a main channel with micro-reflections is flanked on either side by adjacent channels. Thermal noise normally generated by the receiver's analog front-end is emulated and injected into the signal. The resulting structure utilizes 43 dedicated multipliers and 401.125 KB of RAM, and achieves a modulation error ratio (MER) of 55.29 dB

    Customer premise service study for 30/20 GHz satellite system

    Get PDF
    Satellite systems in which the space segment operates in the 30/20 GHz frequency band are defined and compared as to their potential for providing various types of communications services to customer premises and the economic and technical feasibility of doing so. Technical tasks performed include: market postulation, definition of the ground segment, definition of the space segment, definition of the integrated satellite system, service costs for satellite systems, sensitivity analysis, and critical technology. Based on an analysis of market data, a sufficiently large market for services is projected so as to make the system economically viable. A large market, and hence a high capacity satellite system, is found to be necessary to minimize service costs, i.e., economy of scale is found to hold. The wide bandwidth expected to be available in the 30/20 GHz band, along with frequency reuse which further increases the effective system bandwidth, makes possible the high capacity system. Extensive ground networking is required in most systems to both connect users into the system and to interconnect Earth stations to provide spatial diversity. Earth station spatial diversity is found to be a cost effective means of compensating the large fading encountered in the 30/20 GHz operating band

    Program on application of communication satellites to educational development. Communication media and educational technology: An overview and assessment with reference to communication satellites

    Get PDF
    Technology assessment of communication media and educational technology including future trends utilizing communication satellites, television, and computer-assisted instructio

    Techniques for nonlinear distortion suppression in radio over fiber communication systems

    Get PDF
    Radio over fiber (RoF) is a promising technology that will indisputably compete as a viable solution for future wireless, cellular and broadband networks. RoF, when combined with dense wavelength division multiplexing (DWDM), such as SONET/SDH, it can become a complete flexible and cost effective solution to the global telecommunication network, where asynchronous and synchronous communications may be efficiently supported. Subcarrier modulation (SCM) is utilized to modulate a RF signal on light, which in turn will be transmitted by fiber. Unfortunately, the transmission in most cases may become corrupted by nonlinear distortion that is induced by the nonlinear response of the optical transmitter, optical receiver and chromatic dispersion of the single mode fiber (SMF). The nonlinear distortion degrades the receiver sensitivity, which leads to a poor bit error rate (BER) and spurious free dynamic range (SFDR). Ultimately, this will increase RoF system costs and render it impractical. The objective of this thesis is to develop linearization methods that reduce the nonlinear distortion, increase receiver sensitivity and increase SFDR. The designs should also address the entire RoF system by combating the optical power fading issue that will be discussed in Chapter 2 without significantly adding great expense and complexity to the RoF system. Four optical linearization methods are proposed and shown through extensive simulation and/or experimentation to outperform similar existing linearization systems described in literature. The proposed single wavelength balanced system is shown to improve the suppression of 2nd order distortion over the dual wavelength balanced system, thereby leading to greater improvement in receiver sensitivity and BER. Furthermore, the design also suppresses relative intensity noise (RIN). The proposed tunable fiber Bragg grating (FBG) balanced system is capable of suppressing both 2 nd and 3 rd order distortions despite which RF carrier that is used. Furthermore, it was shown to outperform the conventional RoF system in terms of receiver sensitivity and BER. The proposed asymmetric Mach-Zehnder modulator (MZM) has been shown to generate optical single sideband (OSSB) transmissions and outperform the dual-parallel modulator, by improving 3rd order intermodulation distortion (3IMD) suppression and increasing SFDR. The final proposed linearization method is the mixed-polarization MZM, where OSSB is also generated and outperforms the conventional OSSB RoF system in terms of 3IMD suppression and SFDR. Furthermore, close form expressions for SFDR are developed for the final two designs, which is crucial in study of their stability and performance

    Satellite provided fixed communications services: A forecast of potential domestic demand through the year 2000: Volume 2: Main text

    Get PDF
    Potential satellite-provided fixed communications services, baseline forecasts, net long haul forecasts, cost analysis, net addressable forecasts, capacity requirements, and satellite system market development are considered

    Techniques to Improve the Efficiency of Data Transmission in Cable Networks

    Get PDF
    The cable television (CATV) networks, since their introduction in the late 1940s, have now become a crucial part of the broadcasting industry. To keep up with growing demands from the subscribers, cable networks nowadays not only provide television programs but also deliver two-way interactive services such as telephone, high-speed Internet and social TV features. A new standard for CATV networks is released every five to six years to satisfy the growing demands from the mass market. From this perspective, this thesis is concerned with three main aspects for the continuing development of cable networks: (i) efficient implementations of backward-compatibility functions from the old standard, (ii) addressing and providing solutions for technically-challenging issues in the current standard and, (iii) looking for prospective features that can be implemented in the future standard. Since 1997, five different versions of the digital CATV standard had been released in North America. A new standard often contains major improvements over the previous one. The latest version of the standard, namely DOCSIS 3.1 (released in late 2013), is packed with state-of-the-art technologies and allows approximately ten times the amount of traffic as compared to the previous standard, DOCSIS 3.0 (released in 2008). Backward-compatibility is a must-have function for cable networks. In particular, to facilitate the system migration from older standards to a newer one, the backward compatible functions in the old standards must remain in the newer-standard products. More importantly, to keep the implementation cost low, the inherited backward compatible functions must be redesigned by taking advantage of the latest technology and algorithms. To improve the backward-compatibility functions, the first contribution of the thesis focuses on redesigning the pulse shaping filter by exploiting infinite impulse response (IIR) filter structures as an alternative to the conventional finite impulse response (FIR) structures. Comprehensive comparisons show that more economical filters with better performance can be obtained by the proposed design algorithm, which considers a hybrid parameterization of the filter's transfer function in combination with a constraint on the pole radius to be less than 1. The second contribution of the thesis is a new fractional timing estimation algorithm based on peak detection by log-domain interpolation. When compared with the commonly-used timing detection method, which is based on parabolic interpolation, the proposed algorithm yields more accurate estimation with a comparable implementation cost. The third contribution of the thesis is a technique to estimate the multipath channel for DOCSIS 3.1 cable networks. DOCSIS 3.1 is markedly different from prior generations of CATV networks in that OFDM/OFDMA is employed to create a spectrally-efficient signal. In order to effectively demodulate such a signal, it is necessary to employ a demodulation circuit which involves estimation and tracking of the multipath channel. The estimation and tracking must be highly accurate because extremely dense constellations such as 4096-QAM and possibly 16384-QAM can be used in DOCSIS 3.1. The conventional OFDM channel estimators available in the literature either do not perform satisfactorily or are not suitable for the DOCSIS 3.1 channel. The novel channel estimation technique proposed in this thesis iteratively searches for parameters of the channel paths. The proposed technique not only substantially enhances the channel estimation accuracy, but also can, at no cost, accurately identify the delay of each echo in the system. The echo delay information is valuable for proactive maintenance of the network. The fourth contribution of this thesis is a novel scheme that allows OFDM transmission without the use of a cyclic prefix (CP). The structure of OFDM in the current DOCSIS 3.1 does not achieve the maximum throughput if the channel has multipath components. The multipath channel causes inter-symbol-interference (ISI), which is commonly mitigated by employing CP. The CP acts as a guard interval that, while successfully protecting the signal from ISI, reduces the transmission throughput. The problem becomes more severe for downstream direction, where the throughput of the entire system is determined by the user with the worst channel. To solve the problem, this thesis proposes major alterations to the current DOCSIS 3.1 OFDM/OFDMA structure. The alterations involve using a pair of Nyquist filters at the transceivers and an efficient time-domain equalizer (TEQ) at the receiver to reduce ISI down to a negligible level without the need of CP. Simulation results demonstrate that, by incorporating the proposed alterations to the DOCSIS 3.1 down-link channel, the system can achieve the maximum throughput over a wide range of multipath channel conditions

    Timing Recovery for DOCSIS 3.1 Upstream OFDMA Signals

    Get PDF
    Data-Over-Cable Service Interface Specification (DOCSIS) is a global standard for cable communication systems. Before version 3.1, the standard has always specified single-carrier (SC) quadrature-amplitude modulation (QAM) as the modulation scheme. Given that the multi-carrier orthogonal frequency-division multiplexing (OFDM) technique has been increasingly popular and adopted in many wired/wireless communications systems, the newest cable communication standard, DOCSIS 3.1, also introduces OFDM as a major upgrade to improve transmission efficiency. In any digital communication systems, timing synchronization is required to determine and compensate for the timing offset from the transmitter to the receiver. This task is especially crucial and challenging in an OFDM system due to its very high sensitivity to synchronization errors. Although there have been many studies on the topic of OFDM timing synchronization, none of the existing methods are not directly applicable to DOCSIS 3.1 systems. Therefore, the main objective of this research is to develop effective and affordable timing synchronization algorithms for the DOCSIS 3.1 upstream signal. Specifically, three timing synchronization algorithms are proposed to comply and take advantage of the structure of the ranging signal (i.e., the signal used for synchronization purpose) specified in DOCSIS 3.1 standard. The proposed methods are evaluated under a realistic multipath uplink cable channel using computer simulation. The first algorithm makes use of the repetitive pattern of the symbol pairs in the ranging signal. The locations of the symbol pairs are determined by calculating a correlation metric and identifying its maximum value. The second and third algorithms are developed so that they exploit the mirrored symmetry of the binary phase-shift keying (BPSK)-modulated time-domain samples, corresponding to the first non-zero symbol in the ranging signal, and look for the exact location of the symmetry point. The first algorithm, with very low hardware complexity, provides reasonable performance under normal traffic and channel conditions. However its performance under a severe channel condition and heavy traffic is not satisfactory. The second and third algorithms provide much more accurate timing estimation results, even under the severe channel condition and heavy traffic flow. Since the second algorithm requires an enormous increase in hardware complexity, a few options are proposed to reduce the hardware complexity but it is still much higher than the complexity of the first algorithm. Applying the same complexity reduction techniques it is demonstrated that the third algorithm has similar hardware complexity to the first algorithm, while its timing estimation performance remains excellent

    Analog radio over fiber solutions for multi-band 5g systems

    Get PDF
    This study presents radio over fiber (RoF) solutions for the fifth-generation (5G) of wireless networks. After the state of the art and a technical background review, four main contributions are reported. The first one is proposing and investigating a RoF technique based on a dual-drive Mach-Zehnder modulator (DD-MZM) for multi-band mobile fronthauls, in which two radiofrequency (RF) signals in the predicted 5G bands individually feed an arm of the optical modulator. Experimental results demonstrate the approach enhances the RF interference mitigation and can prevail over traditional methods. The second contribution comprises the integration of a 5G transceiver, previously developed by our group, in a passive optical network (PON) using RoF technology and wavelength division multiplexing (WDM) overlay. The proposed architecture innovates by employing DD-MZM and enables to simultaneously transport baseband and 5G candidate RF signals in the same PON infrastructure. The proof-of-concept includes the transmission of a generalized frequency division multiplexing (GFDM) signal generated by the 5G transceiver in the 700 MHz band, a 26 GHz digitally modulated signal as a millimeter-waves 5G band, and a baseband signal from an gigabit PON (GPON). Experimental results demonstrate the 5G transceiver digital performance when using RoF technology for distributing the GFDM signal, as well as Gbit/s throughput at 26 GHz. The third contribution is the implementation of a flexible-waveform and multi-application fiber-wireless (FiWi) system toward 5G. Such system includes the FiWi transmission of the GFDM and filtered orthogonal frequency division multiplexing (F-OFDM) signals at 788 MHz, toward long-range cells for remote or rural mobile access, as well as the recently launched 5G NR standard in microwave and mm-waves, aiming enhanced mobile broadband indoor and outdoor applications. Digital signal processing (DSP) is used for selecting the waveform and linearizing the RoF link. Experimental results demonstrate the suitability of the proposed solution to address 5G scenarios and requirements, besides the applicability of using existent fiber-to-the-home (FTTH) networks from Internet service providers for implementing 5G systems. Finally, the fourth contribution is the implementation of a multi-band 5G NR system with photonic-assisted RF amplification (PAA). The approach takes advantage of a novel PAA technique, based on RoF technology and four-wave mixing effect, that allows straightforward integration to the transport networks. Experimental results demonstrate iv uniform and stable 15 dB wideband gain for Long Term Evolution (LTE) and three 5G signals, distributed in the frequency range from 780 MHz to 26 GHz and coexisting in the mobile fronthaul. The obtained digital performance has efficiently met the Third-Generation Partnership Project (3GPP) requirements, demonstrating the applicability of the proposed approach for using fiber-optic links to distribute and jointly amplify LTE and 5G signals in the optical domain.Agência 1Este trabalho apresenta soluções de rádio sobre fibra (RoF) para aplicações em redes sem fio de quinta geração (5G), e inclui quatro contribuições principais. A primeira delas refere-se à proposta e investigação de uma técnica de RoF baseada no modulador eletroóptico de braço duplo, dual-drive Mach-Zehnder (DD-MZM), para a transmissão simultânea de sinais de radiofrequência (RF) em bandas previstas para redes 5G. Resultados experimentais demonstram que o uso do DD-MZM favorece a ausência de interferência entre os sinais de RF transmitidos. A segunda contribuição trata da integração de um transceptor de RF, desenvolvido para aplicações 5G e apto a prover a forma de onda conhecida como generalized frequency division multiplexing (GFDM), em uma rede óptica passiva (PON) ao utilizar RoF e multiplexação por divisão de comprimento de onda (WDM). A arquitetura proposta permite transportar, na mesma infraestrutura de rede, sinais em banda base e de radiofrequência nas faixas do espectro candidatas para 5G. A prova de conceito inclui a distribuição conjunta de três tipos de sinais: um sinal GFDM na banda de 700 MHz, proveniente do transceptor desenvolvido; um sinal digital na frequência de 26 GHz, assumindo a faixa de ondas milimétricas; sinais em banda base provenientes de uma PON dedicada ao serviço de Internet. Resultados experimentais demonstram o desempenho do transceptor de RF ao utilizar a referida arquitetura para distribuir sinais GFDM, além de taxas de transmissão de dados da ordem de Gbit/s na faixa de 26 GHz. A terceira contribuição corresponde à implementação de um sistema fibra/rádio potencial para redes 5G, operando inclusive com o padrão ―5G New Radio (5G NR)‖ nas faixas de micro-ondas e ondas milimétricas. Tal sistema é capaz de prover macro células na banda de 700 MHz para aplicações de longo alcance e/ou rurais, utilizando sinais GFDM ou filtered orthogonal frequency division multiplexing (F-OFDM), assim como femto células na banda de 26 GHz, destinada a altas taxas de transmissão de dados para comunicações de curto alcance. Resultados experimentais demonstram a aplicabilidade da solução proposta para redes 5G, além da viabilidade de utilizar redes ópticas pertencentes a provedores de Internet para favorecer sistemas de nova geração. Por fim, a quarta contribuição trata da implementação de um sistema 5G NR multibanda, assistido por amplificação de RF no domínio óptico. Esse sistema faz uso de um novo método de amplificação, baseado no efeito não linear da mistura de quatro ondas, que vi permite integração direta em redes de transporte envolvendo rádio sobre fibra. Resultados experimentais demonstram ganho de RF igual a 15 dB em uma ampla faixa de frequências (700 MHz até 26 GHz), atendendo simultaneamente tecnologias de quarta e quinta geração. O desempenho digital obtido atendeu aos requisitos estabelecidos pela 3GPP (Third-Generation Partnership Project), indicando a aplicabilidade da solução em questão para distribuir e conjuntamente amplificar sinais de RF em enlaces de fibra óptica
    corecore