141 research outputs found

    Optical frequency comb technology for ultra-broadband radio-frequency photonics

    Full text link
    The outstanding phase-noise performance of optical frequency combs has led to a revolution in optical synthesis and metrology, covering a myriad of applications, from molecular spectroscopy to laser ranging and optical communications. However, the ideal characteristics of an optical frequency comb are application dependent. In this review, the different techniques for the generation and processing of high-repetition-rate (>10 GHz) optical frequency combs with technologies compatible with optical communication equipment are covered. Particular emphasis is put on the benefits and prospects of this technology in the general field of radio-frequency photonics, including applications in high-performance microwave photonic filtering, ultra-broadband coherent communications, and radio-frequency arbitrary waveform generation.Comment: to appear in Laser and Photonics Review

    Chip-scale optical frequency comb sources for terabit communications

    Get PDF
    To keep up with the ever-increasing data transmission speed needs, data center interconnects are scaling up to provide multi-Tbit/s connectivity. These links require a high number of WDM channels, while the associated transceivers should be compact and energy efficient. Scaling the number of channels, however, is still limited by the lack of adequate optical sources. In this book, we investigate novel chip-scale frequency comb generators as multi-wavelength light sources for Tbit/s WDM links

    Chip-scale optical frequency comb sources for terabit communications

    Get PDF
    The number of devices connected to the internet and the required data transmission speeds are increasing exponentially. To keep up with this trend, data center interconnects should scale up to provide multi-Tbit/s connectivity. With typical distances from a few kilometers to 100 km, these links require the use of a high number of WDM channels. The associated transceivers should have low cost and footprint. The scalability of the number of channels, however, is still limited by the lack of adequate optical sources. In this book, we investigate novel chip-scale frequency comb generators as multi-wavelength light sources in WDM links. With a holistic model, we estimate the performance of comb-based WDM links, and we compare the transmission performance of different comb generator types, namely a quantum-dash mode-locked laser diode and a microresonator-based Kerr comb generator. We characterize their potential for massively-parallel WDM transmission with various transmission experiments. Combined with photonic integrated circuits, these comb sources offer a path towards highly scalable, compact, and energy-efficient Tbit/s transceivers

    Electro-optic frequency combs and their applications in high-precision metrology and high-speed communications

    Get PDF
    Optische Frequenzkämme haben sich in den letzten Jahren zu einem vielseitigen Werkzeug im Bereich der Optik und Photonik entwickelt. Sie ermöglichen den Zugang zu einer Vielzahl von schmalbandigen Spektrallinien, die einen breiten Spektralbereich abdecken und gleichzeitig hochgenau definierte Frequenzen aufweisen. Dadurch wurden Experimente in vielfältigen Anwendungsgebieten ermöglicht, zum Beispiel in den Bereichen optischer Atomuhren, der Präzisionsspektroskopie, der Frequenzmesstechnik, der Distanzmesstechnik und der optischen Telekommunikation. Allerdings umfassen übliche Frequenzkammquellen und die jeweiligen Laboraufbauten typischerweise komplexe opto-elektronische und opto-mechanische Anordnungen, welche aufgrund von Baugröße und fehlender Robustheit gegenüber Umwelteinflüssen wie Temperatur bislang kaum Einzug in breitere industrielle Anwendungen gefunden haben. Diese Arbeit legt deshalb ein besonderes Augenmerk auf die praktische Nutzbarkeit von frequenzkamm-basierten Systemen in industriellen Anwendungen. Im Fokus stehen dabei Robustheit, Kompaktheit und flexible Anpassungsmöglichkeiten an die jeweilige Anwendung. Das bezieht sich sowohl auf die Frequenzkammquellen selbst, als auch auf die zugehörigen anwendungsspezifischen optischen Systeme, in welchen die Frequenzkämme genutzt werden. In der vorliegenden Arbeit wird das Potential elektro-optischer Frequenzkämme in der optischen Messtechnik sowie der optischen Kommunikationstechnik anhand ausgewählter experimenteller Demonstrationen untersucht. Als Mittel zur Realisierung miniaturisierter optischer Systeme mit einem Flächenbedarf von wenigen Quadratmillimetern wird die photonische Integration in Silizium verfolgt. Ein integriertes System zur Frequenzkamm-basierten Distanzmessung sowie integriert-optische Frequenzkammquellen werden demonstriert. Die Erzeugung von Frequenzkämmen durch Dauerstrichlaser in Kombination mit elektro-optischen Modulatoren ist dabei ein besonders vielversprechender Ansatz. Zwar werden dabei üblicherweise kleinere optische Bandbreiten erzielt als bei der weitverbreiteten Frequenzkammerzeugung durch modengekoppelte Ultrakurzpulslaser oder durch Kerr-Nichtlinearitäten, aber es bieten sich andere wertvolle Vorteile an. So erlaubt die elektro-optische Kammerzeugung beispielsweise eine nahezu freie Wahl der Mittenfrequenz durch Auswahl oder Einstellung des Dauerstrichlasers. Durch den Einsatz verschiedener Laser können sogar gleichzeitig mehrere Frequenzkämme unterschiedlicher Mittenfrequenz erzeugt werden, was sich in verschiedenen Anwendungen vorteilhaft ausnutzen lässt. Dies wird in dieser Arbeit anhand zweier Beispiele aus der optischen Messtechnik demonstriert, siehe Kapitel 3 und Kapitel 5. Der Kammlinienabstand ist bei elektro-optisch erzeugten Kämmen definiert durch die elektronisch erzeugte Modulationsfrequenz. Das bietet mehrere Vorteile: Der Linienabstand ist frei einstellbar, sehr stabil, und einfach rückführbar auf einen Frequenzstandard. Der Verzicht auf einen optischen Resonator macht die Kammquelle robust gegenüber Umwelteinflüssen wie z.B. Vibration. Zudem machen Fortschritte bei der Entwicklung von hochintegrierten optischen Modulatoren auf Silizium eine Umsetzung der Frequenzkammquellen in Siliziumphotonik möglich. Die erste derartige Komponente und deren Anwendung in der optischen Telekommunikation wird in Kapitel 6 vorgestellt. Photonische Integration in Silizium bietet außerdem das Potential, miniaturisierte optische Systeme mit vielfältiger Funktionalität zu realisieren. Solche Systeme zeichnen sich durch extrem kleinen Platzbedarf, Kompatibilität mit hochentwickelten und massentauglichen Fertigungstechniken aus der CMOS-(Complementary Metal-Oxide-Semiconductor)-Mikroelektronik und durch die Möglichkeit zur Kointegration elektronischer Schaltungen auf demselben Chip aus. Die hohe Integrationsdichte eröffnet die Perspektive, optische Systeme z.B. für Sensorik tief in industriellen Maschinen zu integrieren. Kapitel 1 gibt eine kurze Einführung in optische Frequenzkämme und deren vielfältige Anwendungen in Wissenschaft und Technik. Der Stand der Technik zu unterschiedlichen Ansätzen zur Frequenzkammerzeugung und deren jeweiligen Eigenschaften werden diskutiert, und es werden die Vorzüge der in dieser Arbeit verwendeten elektro-optischen Frequenzkämme erläutert. Des Weiteren wird die Integration photonischer Systeme und Bauelemente auf Silizium vorgestellt. Schließlich werden die sich ergebenden Vorteile bei der Anwendung in optischer Messtechnik und optischer Telekommunikation diskutiert. Kapitel 2 fasst die physikalischen Grundlagen der Arbeit zusammen. Die Funktionsprinzipien elektro-optischer Modulatoren werden beschrieben sowie deren Anwendung zur Erzeugung von Frequenzkämmen. Zusätzlich wird das Konzept sogenannter synthetischer Wellenlängen eingeführt, welches in der optischen Distanzmesstechnik Anwendung findet. Kapitel 3 beschreibt ein Prinzip zur Distanzmessung mittels zweier elektro-optischer Frequenzkämme zur kontaktlosen Vermessung technischer Objekte. Die Leistungsfähigkeit des Ansatzes wird durch eine Erfassung von ausgedehnten Oberflächenprofilen in Form von Punktwolken demonstriert, wobei eine verhältnismäßig kurze Messzeit von 9.1 µs pro Punkt ausreichend ist. Dabei wird der faseroptisch angebundene Sensorkopf von einer Koordinatenmessmaschine über die Oberfläche bewegt. Durch Temperaturschwankungen im faser-optischen Aufbau ausgelöste Messabweichungen werden durch die Messung mit Lasern unterschiedlicher Emissionsfrequenz kompensiert. Kapitel 4 beschreibt ein integriert-optisches System auf Silizium zur frequenzkamm-basierten Distanzmessung. Das System beinhaltet das zum Heterodynempfang genutzte Interferometer inklusive eines einstellbaren Leistungsteilers sowie der Photodetektoren. Der Platzbedarf aller Komponenten auf dem Siliziumchip beträgt 0.25 mm2^{2}. Der Chip wird in dem in Kapitel 3 eingeführten Messverfahren eingesetzt, wobei Distanzmessungen mit Root-mean-square-Fehlern von 3.2 µm und 14 µs Erfassungszeit demonstriert werden. Kapitel 5 stellt ein Distanzmesssystem vor, bei welchem eine grobauflösende Phasenlaufzeitmessung mit großem Eindeutigkeitsbereich mit einer interferometrischen Distanzmessung mit synthetischen Wellenlängen zur Verfeinerung der Messgenauigkeit kombiniert wird. Die durch vier Laser erzeugten synthetischen Wellenlängen bzw. die Frequenzabstände der Laser werden zeitgleich zur Distanzmessung mittels eines auf elektro-optischer Modulation basierenden Verfahrens vermessen. Durch diese Referenzierung wird der Einsatz freilaufender Laser ohne Wellenlängenstabilisierung ermöglicht. Es werden Messraten von 300 Hz und Genauigkeiten im Mikrometerbereich erreicht. Kapitel 6 beschreibt die weltweit erste Demonstration elektro-optischer Frequenzkammquellen auf Silizium und die hierzu genutzte hybride Materialplattform aus Silizium und organischen Materialien (Silicon-Organic Hybrid, SOH). Spektral flache Frequenzkämme mit 7 Linien innerhalb von 2 dB und Linienabständen von 25 GHz und 40 GHz werden erzeugt. Die praktische Anwendbarkeit solcher Frequenzkämme wird durch eine Reihe von Datenübertragungexperimenten demonstriert. Die einzelnen Kammlinien dienen als Träger für Daten in einem Wellenlängenmultiplex-System, womit eine spektral effiziente Datenübertragung mit Datenraten von über 1 Tbit/s über Distanzen von bis zu 300 km demonstriert wird. Kapitel 7 fasst die Ergebnisse der vorliegenden Arbeit zusammen und gibt einen Ausblick auf die Möglichkeiten, die sich durch weiterentwickelte Kammquellen und fortschreitende Möglichkeiten in der photonischen Integration ergeben

    Micro-combs: a novel generation of optical sources

    Get PDF
    The quest towards the integration of ultra-fast, high-precision optical clocks is reflected in the large number of high-impact papers on the topic published in the last few years. This interest has been catalysed by the impact that high-precision optical frequency combs (OFCs) have had on metrology and spectroscopy in the last decade [1–5]. OFCs are often referred to as optical rulers: their spectra consist of a precise sequence of discrete and equally-spaced spectral lines that represent precise marks in frequency. Their importance was recognised worldwide with the 2005 Nobel Prize being awarded to T.W. Hänsch and J. Hall for their breakthrough in OFC science [5]. They demonstrated that a coherent OFC source with a large spectrum – covering at least one octave – can be stabilised with a self-referenced approach, where the frequency and the phase do not vary and are completely determined by the source physical parameters. These fully stabilised OFCs solved the challenge of directly measuring optical frequencies and are now exploited as the most accurate time references available, ready to replace the current standard for time. Very recent advancements in the fabrication technology of optical micro-cavities [6] are contributing to the development of OFC sources. These efforts may open up the way to realise ultra-fast and stable optical clocks and pulsed sources with extremely high repetition-rates, in the form of compact and integrated devices. Indeed, the fabrication of high-quality factor (high-Q) micro-resonators, capable of dramatically amplifying the optical field, can be considered a photonics breakthrough that has boosted not only the scientific investigation of OFC sources [7–13] but also of optical sensors and compact light modulators [6,14]

    Chip-scale optical frequency comb sources for terabit communications

    Get PDF
    To keep up with the ever-increasing data transmission speed needs, data center interconnects are scaling up to provide multi-Tbit/s connectivity. These links require a high number of WDM channels, while the associated transceivers should be compact and energy efficient. Scaling the number of channels, however, is still limited by the lack of adequate optical sources. In this book, we investigate novel chip-scale frequency comb generators as multi-wavelength light sources for Tbit/s WDM links
    • …
    corecore