214 research outputs found

    Early-Warning Signs for Pattern-Formation in Stochastic Partial Differential Equations

    Full text link
    There have been significant recent advances in our understanding of the potential use and limitations of early-warning signs for predicting drastic changes, so called critical transitions or tipping points, in dynamical systems. A focus of mathematical modeling and analysis has been on stochastic ordinary differential equations, where generic statistical early-warning signs can be identified near bifurcation-induced tipping points. In this paper, we outline some basic steps to extend this theory to stochastic partial differential equations with a focus on analytically characterizing basic scaling laws for linear SPDEs and comparing the results to numerical simulations of fully nonlinear problems. In particular, we study stochastic versions of the Swift-Hohenberg and Ginzburg-Landau equations. We derive a scaling law of the covariance operator in a regime where linearization is expected to be a good approximation for the local fluctuations around deterministic steady states. We compare these results to direct numerical simulation, and study the influence of noise level, noise color, distance to bifurcation and domain size on early-warning signs.Comment: Published in Communications in Nonlinear Science and Numerical Simulation (2014

    Grain boundary pinning and glassy dynamics in stripe phases

    Full text link
    We study numerically and analytically the coarsening of stripe phases in two spatial dimensions, and show that transient configurations do not achieve long ranged orientational order but rather evolve into glassy configurations with very slow dynamics. In the absence of thermal fluctuations, defects such as grain boundaries become pinned in an effective periodic potential that is induced by the underlying periodicity of the stripe pattern itself. Pinning arises without quenched disorder from the non-adiabatic coupling between the slowly varying envelope of the order parameter around a defect, and its fast variation over the stripe wavelength. The characteristic size of ordered domains asymptotes to a finite value $R_g \sim \lambda_0\ \epsilon^{-1/2}\exp(|a|/\sqrt{\epsilon}),where, where \epsilon\ll 1isthedimensionlessdistanceawayfromthreshold, is the dimensionless distance away from threshold, \lambda_0thestripewavelength,and the stripe wavelength, and a$ a constant of order unity. Random fluctuations allow defect motion to resume until a new characteristic scale is reached, function of the intensity of the fluctuations. We finally discuss the relationship between defect pinning and the coarsening laws obtained in the intermediate time regime.Comment: 17 pages, 8 figures. Corrected version with one new figur

    Dynamics of Ordering in Alloys with Modulated Phases

    Full text link
    This paper presents a theoretical model for studying the dynamics of ordering in alloys which exhibit modulated phases. The model is different from the standard time-dependent Ginzburg-Landau description of the evolution of a non-conserved order parameter and resembles the Swift-Hohenberg model. The early-stage growth kinetics is analyzed and compared to the Cahn-Hilliard theory of continuous ordering. The effects of non-linearities on the growth kinetics are discussed qualitatively and it is shown that the presence of an underlying elastic lattice introduces qualitatively new effects. A lattice Hamiltonian capable of describing these effects and suitable for carrying out simulations of the growth kinetics is also constructed.Comment: 18 pages, 3 figures (postscript files appended), Brandeis-BC9

    The impact of white noise on a supercritical bifurcation in the Swift-Hohenberg equation

    Full text link
    We consider the impact of additive Gaussian white noise on a supercritical pitchfork bifurcation in an unbounded domain. As an example we focus on the stochastic Swift-Hohenberg equation with polynomial nonlinearity. Here we identify the order where small noise first impacts the bifurcation. Using an approximation via modulation equations, we provide a tool to analyse how the noise influences the dynamics close to a change of stability.Comment: To appear on Physica D: Nonlinear Phenomen

    Modulation Equations: Stochastic Bifurcation in Large Domains

    Full text link
    We consider the stochastic Swift-Hohenberg equation on a large domain near its change of stability. We show that, under the appropriate scaling, its solutions can be approximated by a periodic wave, which is modulated by the solutions to a stochastic Ginzburg-Landau equation. We then proceed to show that this approximation also extends to the invariant measures of these equations

    Transverse Patterns in Nonlinear Optical Resonators

    Full text link
    The book is devoted to the formation and dynamics of localized structures (vortices, solitons) and extended patterns (stripes, hexagons, tilted waves) in nonlinear optical resonators such as lasers, optical parametric oscillators, and photorefractive oscillators. The theoretical analysis is performed by deriving order parameter equations, and also through numerical integration of microscopic models of the systems under investigation. Experimental observations, and possible technological implementations of transverse optical patterns are also discussed. A comparison with patterns found in other nonlinear systems, i.e. chemical, biological, and hydrodynamical systems, is given. This article contains the table of contents and the introductory chapter of the book.Comment: 37 pages, 14 figures. Table of contents and introductory chapter of the boo

    Stationary and Oscillatory Spatial Patterns Induced by Global Periodic Switching

    Full text link
    We propose a new mechanism for pattern formation based on the global alternation of two dynamics neither of which exhibits patterns. When driven by either one of the separate dynamics, the system goes to a spatially homogeneous state associated with that dynamics. However, when the two dynamics are globally alternated sufficiently rapidly, the system exhibits stationary spatial patterns. Somewhat slower switching leads to oscillatory patterns. We support our findings by numerical simulations and discuss the results in terms of the symmetries of the system and the ratio of two relevant characteristic times, the switching period and the relaxation time to a homogeneous state in each separate dynamics.Comment: REVTEX preprint: 12 pages including 1 (B&W) + 3 (COLOR) figures (to appear in Physical Review Letters
    corecore