3,307 research outputs found

    Underwater Optical Wireless Communications, Networking, and Localization: A Survey

    Full text link
    Underwater wireless communications can be carried out through acoustic, radio frequency (RF), and optical waves. Compared to its bandwidth limited acoustic and RF counterparts, underwater optical wireless communications (UOWCs) can support higher data rates at low latency levels. However, severe aquatic channel conditions (e.g., absorption, scattering, turbulence, etc.) pose great challenges for UOWCs and significantly reduce the attainable communication ranges, which necessitates efficient networking and localization solutions. Therefore, we provide a comprehensive survey on the challenges, advances, and prospects of underwater optical wireless networks (UOWNs) from a layer by layer perspective which includes: 1) Potential network architectures; 2) Physical layer issues including propagation characteristics, channel modeling, and modulation techniques 3) Data link layer problems covering link configurations, link budgets, performance metrics, and multiple access schemes; 4) Network layer topics containing relaying techniques and potential routing algorithms; 5) Transport layer subjects such as connectivity, reliability, flow and congestion control; 6) Application layer goals and state-of-the-art UOWN applications, and 7) Localization and its impacts on UOWN layers. Finally, we outline the open research challenges and point out the future directions for underwater optical wireless communications, networking, and localization research.Comment: This manuscript is submitted to IEEE Communication Surveys and Tutorials for possible publicatio

    Machine Learning for Wireless Communications in the Internet of Things: A Comprehensive Survey

    Full text link
    The Internet of Things (IoT) is expected to require more effective and efficient wireless communications than ever before. For this reason, techniques such as spectrum sharing, dynamic spectrum access, extraction of signal intelligence and optimized routing will soon become essential components of the IoT wireless communication paradigm. Given that the majority of the IoT will be composed of tiny, mobile, and energy-constrained devices, traditional techniques based on a priori network optimization may not be suitable, since (i) an accurate model of the environment may not be readily available in practical scenarios; (ii) the computational requirements of traditional optimization techniques may prove unbearable for IoT devices. To address the above challenges, much research has been devoted to exploring the use of machine learning to address problems in the IoT wireless communications domain. This work provides a comprehensive survey of the state of the art in the application of machine learning techniques to address key problems in IoT wireless communications with an emphasis on its ad hoc networking aspect. First, we present extensive background notions of machine learning techniques. Then, by adopting a bottom-up approach, we examine existing work on machine learning for the IoT at the physical, data-link and network layer of the protocol stack. Thereafter, we discuss directions taken by the community towards hardware implementation to ensure the feasibility of these techniques. Additionally, before concluding, we also provide a brief discussion of the application of machine learning in IoT beyond wireless communication. Finally, each of these discussions is accompanied by a detailed analysis of the related open problems and challenges.Comment: Ad Hoc Networks Journa

    Configuration Learning in Underwater Optical Links

    Full text link
    A new research problem named configuration learning is described in this work. A novel algorithm is proposed to address the configuration learning problem. The configuration learning problem is defined to be the optimization of the Machine Learning (ML) classifier to maximize the ML performance metric optimizing the transmitter configuration in the signal processing/communication systems. Specifically, this configuration learning problem is investigated in an underwater optical communication system with signal processing performance metric of the physical-layer communication throughput. A novel algorithm is proposed to perform the configuration learning by alternating optimization of key design parameters and switching between several Recurrent Neural Network (RNN) classifiers dependant on the learning objective. The proposed ML algorithm is validated with the datasets of an underwater optical communication system and is compared with competing ML algorithms. Performance results indicate that the proposal outperforms the competing algorithms for binary and multi-class configuration learning in underwater optical communication datasets. The proposed configuration learning framework can be further investigated and applied to a broad range of topics in signal processing and communications

    A Comparative Survey of Optical Wireless Technologies: Architectures and Applications

    Full text link
    New high-data-rate multimedia services and applications are evolving continuously and exponentially increasing the demand for wireless capacity of fifth-generation (5G) and beyond. The existing radio frequency (RF) communication spectrum is insufficient to meet the demands of future high-datarate 5G services. Optical wireless communication (OWC), which uses an ultra-wide range of unregulated spectrum, has emerged as a promising solution to overcome the RF spectrum crisis. It has attracted growing research interest worldwide in the last decade for indoor and outdoor applications. OWC offloads huge data traffic applications from RF networks. A 100 Gb/s data rate has already been demonstrated through OWC. It offers services indoors as well as outdoors, and communication distances range from several nm to more than 10000 km. This paper provides a technology overview and a review on optical wireless technologies, such as visible light communication, light fidelity, optical camera communication, free space optical communication, and light detection and ranging. We survey the key technologies for understanding OWC and present state-of-the-art criteria in aspects, such as classification, spectrum use, architecture, and applications. The key contribution of this paper is to clarify the differences among different promising optical wireless technologies and between these technologies and their corresponding similar existing RF technologie

    Identification of Smart Jammers: Learning based Approaches Using Wavelet Representation

    Full text link
    Smart jammer nodes can disrupt communication between a transmitter and a receiver in a wireless network, and they leave traces that are undetectable to classical jammer identification techniques, hidden in the time-frequency plane. These traces cannot be effectively identified through the use of the classical Fourier transform based time-frequency transformation (TFT) techniques with a fixed resolution. Inspired by the adaptive resolution property provided by the wavelet transforms, in this paper, we propose a jammer identification methodology that includes a pre-processing step to obtain a multi-resolution image, followed by the use of a classifier. Support vector machine (SVM) and deep convolutional neural network (DCNN) architectures are investigated as classifiers to automatically extract the features of the transformed signals and to classify them. Three different jamming attacks are considered, the barrage jamming that targets the complete transmission bandwidth, the synchronization signal jamming attack that targets synchronization signals and the reference signal jamming attack that targets the reference signals in an LTE downlink transmission scenario. The performance of the proposed approach is compared with the classical Fourier transform based TFT techniques, demonstrating the efficacy of the proposed approach in the presence of smart jammers

    CNN-Based Signal Detection for Banded Linear Systems

    Full text link
    Banded linear systems arise in many communication scenarios, e.g., those involving inter-carrier interference and inter-symbol interference. Motivated by recent advances in deep learning, we propose to design a high-accuracy low-complexity signal detector for banded linear systems based on convolutional neural networks (CNNs). We develop a novel CNN-based detector by utilizing the banded structure of the channel matrix. Specifically, the proposed CNN-based detector consists of three modules: the input preprocessing module, the CNN module, and the output postprocessing module. With such an architecture, the proposed CNN-based detector is adaptive to different system sizes, and can overcome the curse of dimensionality, which is a ubiquitous challenge in deep learning. Through extensive numerical experiments, we demonstrate that the proposed CNN-based detector outperforms conventional deep neural networks and existing model-based detectors in both accuracy and computational time. Moreover, we show that CNN is flexible for systems with large sizes or wide bands. We also show that the proposed CNN-based detector can be easily extended to near-banded systems such as doubly selective orthogonal frequency division multiplexing (OFDM) systems and 2-D magnetic recording (TDMR) systems, in which the channel matrices do not have a strictly banded structure

    An Electrocommunication System Using FSK Modulation and Deep Learning Based Demodulation for Underwater Robots

    Full text link
    Underwater communication is extremely challenging for small underwater robots which typically have stringent power and size constraints. In our previous work, we developed an artificial electrocommunication system which could be an alternative for the communication of small underwater robots. This paper further presents a new electrocommunication system that utilizes Binary Frequency Shift Keying (2FSK) modulation and deep-learning-based demodulation for underwater robots. We first derive an underwater electrocommunication model that covers both the near-field area and a large transition area outside of the near-field area. 2FSK modulation is adopted to improve the anti-interference ability of the electric signal. A deep learning algorithm is used to demodulate the electric signal by the receiver. Simulations and experiments show that with the same testing condition, the new communication system outperforms the previous system in both the communication distance and the data transmitting rate. In specific, the newly developed communication system achieves stable communication within the distance of 10 m at a data transfer rate of 5 Kbps with a power consumption of less than 0.1 W. The substantial increase in communication distance further improves the possibility of electrocommunication in underwater robotics.Comment: IROS202

    Detection Algorithms for Communication Systems Using Deep Learning

    Full text link
    The design and analysis of communication systems typically rely on the development of mathematical models that describe the underlying communication channel, which dictates the relationship between the transmitted and the received signals. However, in some systems, such as molecular communication systems where chemical signals are used for transfer of information, it is not possible to accurately model this relationship. In these scenarios, because of the lack of mathematical channel models, a completely new approach to design and analysis is required. In this work, we focus on one important aspect of communication systems, the detection algorithms, and demonstrate that by borrowing tools from deep learning, it is possible to train detectors that perform well, without any knowledge of the underlying channel models. We evaluate these algorithms using experimental data that is collected by a chemical communication platform, where the channel model is unknown and difficult to model analytically. We show that deep learning algorithms perform significantly better than a simple detector that was used in previous works, which also did not assume any knowledge of the channel

    Doppler Invariant Demodulation for Shallow Water Acoustic Communications Using Deep Belief Networks

    Full text link
    Shallow water environments create a challenging channel for communications. In this paper, we focus on the challenges posed by the frequency-selective signal distortion called the Doppler effect. We explore the design and performance of machine learning (ML) based demodulation methods --- (1) Deep Belief Network-feed forward Neural Network (DBN-NN) and (2) Deep Belief Network-Convolutional Neural Network (DBN-CNN) in the physical layer of Shallow Water Acoustic Communication (SWAC). The proposed method comprises of a ML based feature extraction method and classification technique. First, the feature extraction converts the received signals to feature images. Next, the classification model correlates the images to a corresponding binary representative. An analysis of the ML based proposed demodulation shows that despite the presence of instantaneous frequencies, the performance of the algorithm shows an invariance with a small 2dB error margin in terms of bit error rate (BER)

    A Novel Method for Classification and Modelling of Underwater Acoustic Communication through Machine Learning and Image Processing Technique

    Get PDF
    The increasing prevalence of underwater activities has highlighted the urgent need for reliable underwater acoustic communication systems. However, the challenging nature of the underwater environment poses significant obstacles to the implementation of conventional voice communication methods. To better understand and improve upon these systems, simulations of the underwater audio channel have been developed using mathematical models and assumptions. In this study, we utilize real-world information gathered from both a measured water reservoir and Lake to evaluate the ability of machine learning and machine learning methods, specifically Long Short-Term Memory (LSTM) and Deep Neural Network (DNN), to accurately reconstruct the underwater audio channel. The outcomes validate the efficiency of machine learning methods, particularly LSTM, in accurately simulating the underwater acoustic communication channel with low mean absolute percentage error. Additionally, this research also includes an image processing to identify the objects present the in the acoustic environmen
    • …
    corecore