256 research outputs found

    Brief Announcement: Automating and Mechanising Cutoff Proofs for Parameterized Verification of Distributed Protocols

    Get PDF
    We propose a framework to automate and mechanize simulation-based proofs of cutoffs for parameterized verification of distributed protocols. We propose a strategy to derive the simulation relation given the cutoff instance and encode the correctness of the simulation relation as a formula in first-order logic. We have successfully applied our approach on a number of distributed protocols

    On the Formal Verification of the Stellar Consensus Protocol

    Get PDF

    An Infinite Needle in a Finite Haystack: Finding Infinite Counter-Models in Deductive Verification

    Full text link
    First-order logic, and quantifiers in particular, are widely used in deductive verification. Quantifiers are essential for describing systems with unbounded domains, but prove difficult for automated solvers. Significant effort has been dedicated to finding quantifier instantiations that establish unsatisfiability, thus ensuring validity of a system's verification conditions. However, in many cases the formulas are satisfiable: this is often the case in intermediate steps of the verification process. For such cases, existing tools are limited to finding finite models as counterexamples. Yet, some quantified formulas are satisfiable but only have infinite models. Such infinite counter-models are especially typical when first-order logic is used to approximate inductive definitions such as linked lists or the natural numbers. The inability of solvers to find infinite models makes them diverge in these cases. In this paper, we tackle the problem of finding such infinite models. These models allow the user to identify and fix bugs in the modeling of the system and its properties. Our approach consists of three parts. First, we introduce symbolic structures as a way to represent certain infinite models. Second, we describe an effective model finding procedure that symbolically explores a given family of symbolic structures. Finally, we identify a new decidable fragment of first-order logic that extends and subsumes the many-sorted variant of EPR, where satisfiable formulas always have a model representable by a symbolic structure within a known family. We evaluate our approach on examples from the domains of distributed consensus protocols and of heap-manipulating programs. Our implementation quickly finds infinite counter-models that demonstrate the source of verification failures in a simple way, while SMT solvers and theorem provers such as Z3, cvc5, and Vampire diverge

    Parameterized Synthesis

    Full text link
    We study the synthesis problem for distributed architectures with a parametric number of finite-state components. Parameterized specifications arise naturally in a synthesis setting, but thus far it was unclear how to detect realizability and how to perform synthesis in a parameterized setting. Using a classical result from verification, we show that for a class of specifications in indexed LTL\X, parameterized synthesis in token ring networks is equivalent to distributed synthesis in a network consisting of a few copies of a single process. Adapting a well-known result from distributed synthesis, we show that the latter problem is undecidable. We describe a semi-decision procedure for the parameterized synthesis problem in token rings, based on bounded synthesis. We extend the approach to parameterized synthesis in token-passing networks with arbitrary topologies, and show applicability on a simple case study. Finally, we sketch a general framework for parameterized synthesis based on cutoffs and other parameterized verification techniques.Comment: Extended version of TACAS 2012 paper, 29 page

    Pabble: parameterised Scribble

    Get PDF
    © 2014, The Author(s).Many parallel and distributed message-passing programs are written in a parametric way over available resources, in particular the number of nodes and their topologies, so that a single parallel program can scale over different environments. This article presents a parameterised protocol description language, Pabble, which can guarantee safety and progress in a large class of practical, complex parameterised message-passing programs through static checking. Pabble can describe an overall interaction topology, using a concise and expressive notation, designed for a variable number of participants arranged in multiple dimensions. These parameterised protocols in turn automatically generate local protocols for type checking parameterised MPI programs for communication safety and deadlock freedom. In spite of undecidability of endpoint projection and type checking in the underlying parameterised session type theory, our method guarantees the termination of end point projection and type checking
    • …
    corecore