1,070 research outputs found

    Modularity in answer set programs

    Get PDF
    Answer set programming (ASP) is an approach to rule-based constraint programming allowing flexible knowledge representation in variety of application areas. The declarative nature of ASP is reflected in problem solving. First, a programmer writes down a logic program the answer sets of which correspond to the solutions of the problem. The answer sets of the program are then computed using a special purpose search engine, an ASP solver. The development of efficient ASP solvers has enabled the use of answer set programming in various application domains such as planning, product configuration, computer aided verification, and bioinformatics. The topic of this thesis is modularity in answer set programming. While modern programming languages typically provide means to exploit modularity in a number of ways to govern the complexity of programs and their development process, relatively little attention has been paid to modularity in ASP. When designing a module architecture for ASP, it is essential to establish full compositionality of the semantics with respect to the module system. A balance is sought between introducing restrictions that guarantee the compositionality of the semantics and enforce a good programming style in ASP, and avoiding restrictions on the module hierarchy for the sake of flexibility of knowledge representation. To justify a replacement of a module with another, that is, to be able to guarantee that changes made on the level of modules do not alter the semantics of the program when seen as an entity, a notion of equivalence for modules is provided. In close connection with the development of the compositional module architecture, a transformation from verification of equivalence to search for answer sets is developed. The translation-based approach makes it unnecessary to develop a dedicated tool for the equivalence verification task by allowing the direct use of existing ASP solvers. Translations and transformations between different problems, program classes, and formalisms are another central theme in the thesis. To guarantee efficiency and soundness of the translation-based approach, certain syntactical and semantical properties of transformations are desirable, in terms of translation time, solution correspondence between the original and the transformed problem, and locality/globality of a particular transformation. In certain cases a more refined notion of minimality than that inherent in ASP can make program encodings more intuitive. Lifschitz' parallel and prioritized circumscription offer a solution in which certain atoms are allowed to vary or to have fixed values while others are falsified as far as possible according to priority classes. In this thesis a linear and faithful transformation embedding parallel and prioritized circumscription into ASP is provided. This enhances the knowledge representation capabilities of answer set programming by allowing the use of existing ASP solvers for computing parallel and prioritized circumscription

    Promoting Modular Nonmonotonic Logic Programs

    Get PDF
    Modularity in Logic Programming has gained much attention over the past years. To date, many formalisms have been proposed that feature various aspects of modularity. In this paper, we present our current work on Modular Nonmonotonic Logic Programs (MLPs), which are logic programs under answer set semantics with modules that have contextualized input provided by other modules. Moreover, they allow for (mutually) recursive module calls. We pinpoint issues that are present in such cyclic module systems and highlight how MLPs addresses them

    Towards a unified theory of logic programming semantics: Level mapping characterizations of selector generated models

    Full text link
    Currently, the variety of expressive extensions and different semantics created for logic programs with negation is diverse and heterogeneous, and there is a lack of comprehensive comparative studies which map out the multitude of perspectives in a uniform way. Most recently, however, new methodologies have been proposed which allow one to derive uniform characterizations of different declarative semantics for logic programs with negation. In this paper, we study the relationship between two of these approaches, namely the level mapping characterizations due to [Hitzler and Wendt 2005], and the selector generated models due to [Schwarz 2004]. We will show that the latter can be captured by means of the former, thereby supporting the claim that level mappings provide a very flexible framework which is applicable to very diversely defined semantics.Comment: 17 page

    Embedding Non-Ground Logic Programs into Autoepistemic Logic for Knowledge Base Combination

    Full text link
    In the context of the Semantic Web, several approaches to the combination of ontologies, given in terms of theories of classical first-order logic and rule bases, have been proposed. They either cast rules into classical logic or limit the interaction between rules and ontologies. Autoepistemic logic (AEL) is an attractive formalism which allows to overcome these limitations, by serving as a uniform host language to embed ontologies and nonmonotonic logic programs into it. For the latter, so far only the propositional setting has been considered. In this paper, we present three embeddings of normal and three embeddings of disjunctive non-ground logic programs under the stable model semantics into first-order AEL. While the embeddings all correspond with respect to objective ground atoms, differences arise when considering non-atomic formulas and combinations with first-order theories. We compare the embeddings with respect to stable expansions and autoepistemic consequences, considering the embeddings by themselves, as well as combinations with classical theories. Our results reveal differences and correspondences of the embeddings and provide useful guidance in the choice of a particular embedding for knowledge combination.Comment: 52 pages, submitte
    • …
    corecore