570 research outputs found

    A Formally Verified Compiler for Lustre

    Get PDF
    International audienceThe correct compilation of block diagram languages like Lustre, Scade, and a discrete subset of Simulink is important since they are used to program critical embedded control software. We describe the specification and verification in an Interactive Theorem Prover of a compilation chain that treats the key aspects of Lustre: sampling, nodes, and delays. Building on CompCert, we show that repeated execution of the generated assembly code faithfully implements the dataflow semantics of source programs.We resolve two key technical challenges. The first is the change from a synchronous dataflow semantics, where programs manipulate streams of values, to an imperative one, where computations manipulate memory sequentially. The second is the verified compilation of an imperative language with encapsulated state to C code where the state is realized by nested records. We also treat a standard control optimization that eliminates unnecessary conditional statements

    Vérification de la génération modulaire du code impératif pour Lustre

    Get PDF
    National audienceLes langages synchrones sont utilisés pour programmer des logiciels de contrôle-commande d'applications critiques. Le langage Scade, utilisé dans l'industrie pour ces applications, est fondé sur le langage Lustre introduit par Caspi et Halbwachs. On s'intéresse ici à la formalisation et la preuve, dans l'assistant de preuve Coq, d'une étape clef de la compilation : la traduction de programmes Lustre vers des programmes d'un langage impératif. Le défi est de passer d'une sémantique synchrone flot de données, où un programme manipule des flots, à une sémantique impérative, où un programme manipule la mémoire de façon séquentielle. Nous spécifions et vérifions un générateur de code simple qui gère les traits principaux de Lustre : l'échantillonnage, les noeuds et les délais. La preuve utilise un modèle sémantique intermédiaire qui mélange des traits flot de données et impératifs et permet de définir un invariant inductif essentiel. Nous exploitons la formalisation proposée pour vérifier une optimisation classique qui fusionne des structures conditionnelles dans le code impératif généré

    Verified Lustre Normalization with Node Subsampling

    Get PDF
    International audienceDataflow languages allow the specification of reactive systems by mutually recursive stream equations, functions, and boolean activation conditions called clocks. Lustre and Scade are dataflow languages for programming embedded systems. Dataflow programs are compiled by a succession of passes. This article focuses on the normalization pass which rewrites programs into the simpler form required for code generation. Vélus is a compiler from a normalized form of Lustre to CompCert’s Clight language. Its specification in the Coq interactive theorem prover includes an end-to-end correctness proof that the values prescribed by the dataflow semantics of source programs are produced by executions of generated assembly code. We describe how to extend Vélus with a normalization pass and to allow subsampled node inputs and outputs. We propose semantic definitions for the unrestricted language, divide normalization into three steps to facilitate proofs, adapt the clock type system to handle richer node definitions, and extend the end-to-end correctness theorem to incorporate the new features. The proofs require reasoning about the relation between static clock annotations and the presence and absence of values in the dynamic semantics. The generalization of node inputs requires adding a compiler pass to ensure the initialization of variables passed in function calls

    Proceedings of the First NASA Formal Methods Symposium

    Get PDF
    Topics covered include: Model Checking - My 27-Year Quest to Overcome the State Explosion Problem; Applying Formal Methods to NASA Projects: Transition from Research to Practice; TLA+: Whence, Wherefore, and Whither; Formal Methods Applications in Air Transportation; Theorem Proving in Intel Hardware Design; Building a Formal Model of a Human-Interactive System: Insights into the Integration of Formal Methods and Human Factors Engineering; Model Checking for Autonomic Systems Specified with ASSL; A Game-Theoretic Approach to Branching Time Abstract-Check-Refine Process; Software Model Checking Without Source Code; Generalized Abstract Symbolic Summaries; A Comparative Study of Randomized Constraint Solvers for Random-Symbolic Testing; Component-Oriented Behavior Extraction for Autonomic System Design; Automated Verification of Design Patterns with LePUS3; A Module Language for Typing by Contracts; From Goal-Oriented Requirements to Event-B Specifications; Introduction of Virtualization Technology to Multi-Process Model Checking; Comparing Techniques for Certified Static Analysis; Towards a Framework for Generating Tests to Satisfy Complex Code Coverage in Java Pathfinder; jFuzz: A Concolic Whitebox Fuzzer for Java; Machine-Checkable Timed CSP; Stochastic Formal Correctness of Numerical Algorithms; Deductive Verification of Cryptographic Software; Coloured Petri Net Refinement Specification and Correctness Proof with Coq; Modeling Guidelines for Code Generation in the Railway Signaling Context; Tactical Synthesis Of Efficient Global Search Algorithms; Towards Co-Engineering Communicating Autonomous Cyber-Physical Systems; and Formal Methods for Automated Diagnosis of Autosub 6000

    Interactive Model-Based Compilation: A Modeller-Driven Development Approach

    Get PDF
    There is a growing tendency for using domain-specific languages, which help domain experts to stay focussed on abstract problem solutions. It is important to carefully design these languages and tools, which fundamentally perform model-to-model transformations. The quality of both usually decides the effectiveness of the subsequent development and therefore the quality of the final applications. However, as the complexity and safety requirements of modern systems grow, it becomes increasingly burdensome to create highly customized languages and difficult to provide reasonable overviews within these tools. This thesis introduces a new interactive model-based compilation methodology. Compilations for arbitrary model-to-model transformations are themselves described as models. They can be instantiated for particular inputs, e. g. a program, to create concrete compilation runs, which return the result of that compilation. The compilation instance is interactively observable. Intermediate results serve as new inputs and as documentation. They can be used to create highly customized views and facilitate understandability. This methodology guides modellers from the start of the compilation to the final result so that they can interactively refine their models. The methodology has been implemented and validated as the KIELER Compiler (KiCo) and is available as part of the KIELER open-source project. It is used to implement the current reference compiler for the SCCharts language, a statecharts dialect designed for specifying safety-critical reactive systems based on a synchronous model of computation. The interactive model-based compilation approach was key to the rapid prototyping of three different compilation strategies, as well as new language extensions, variations and closely related languages. The results are verified with benchmarks, which are again modelled using the same approach and technology. The usability of the SCCharts language and the KiCo tooling is documented with long-term surveys and real-life industrial, academic and teaching examples

    Operating System Support for Redundant Multithreading

    Get PDF
    Failing hardware is a fact and trends in microprocessor design indicate that the fraction of hardware suffering from permanent and transient faults will continue to increase in future chip generations. Researchers proposed various solutions to this issue with different downsides: Specialized hardware components make hardware more expensive in production and consume additional energy at runtime. Fault-tolerant algorithms and libraries enforce specific programming models on the developer. Compiler-based fault tolerance requires the source code for all applications to be available for recompilation. In this thesis I present ASTEROID, an operating system architecture that integrates applications with different reliability needs. ASTEROID is built on top of the L4/Fiasco.OC microkernel and extends the system with Romain, an operating system service that transparently replicates user applications. Romain supports single- and multi-threaded applications without requiring access to the application's source code. Romain replicates applications and their resources completely and thereby does not rely on hardware extensions, such as ECC-protected memory. In my thesis I describe how to efficiently implement replication as a form of redundant multithreading in software. I develop mechanisms to manage replica resources and to make multi-threaded programs behave deterministically for replication. I furthermore present an approach to handle applications that use shared-memory channels with other programs. My evaluation shows that Romain provides 100% error detection and more than 99.6% error correction for single-bit flips in memory and general-purpose registers. At the same time, Romain's execution time overhead is below 14% for single-threaded applications running in triple-modular redundant mode. The last part of my thesis acknowledges that software-implemented fault tolerance methods often rely on the correct functioning of a certain set of hardware and software components, the Reliable Computing Base (RCB). I introduce the concept of the RCB and discuss what constitutes the RCB of the ASTEROID system and other fault tolerance mechanisms. Thereafter I show three case studies that evaluate approaches to protecting RCB components and thereby aim to achieve a software stack that is fully protected against hardware errors
    • …
    corecore