635 research outputs found

    Application of LEGO Mindstorms Kits for Teaching Mechatronics Engineering

    Get PDF
    One of the major educators’ challenges is to teach the theoretical lessons with practical examples that can be taught in the classroom or teaching laboratories. The application of these examples will face a major problem for students in engineering: the difficulty of understanding and seeing how a mechatronic device works in everyday life. This requires the use of tools that enable the construction of different low cost prototypes to assist in student learning. Another challenge to educators is the need to motivate students during the lessons and to present models that students can make and develop on their own. Within this context this paper presents a pedagogic proposition based on the use of LEGO Mindstorms kits to teach practical lab activities in a mechatronics engineering course. The objective is to develop teaching methodologies with the use of these LEGO kits in order to motivate the students and also to promote a higher interdisciplinarity, by proposing projects that unify different disciplines. Thus, the paper is divided into three parts according to the educational experiences implemented in the course of mechatronics engineering at the Federal University of Uberlândia, Brazil. The first part presents the use of the kits in robotics discipline. The second part presents the use of the virtual kits in the Computer Aided Design discipline with zero-cost. The third part presents a multi-disciplinary project EDROM in mechatronics using LEGO kits

    Part 1 - Overview and tools

    Get PDF
    The embedded systems (ES) formation require a broader set of knowledge, abilities and skills including informatics and electronics concepts in order to develop highly creative and imaginative applications based in analytical studies. Moreover, in an effort to improve the education quality it needs to be followed with intense hands-on laboratories. This paper presents a new approach for embedded systems courses appropriate for both high school and undergraduate classrooms, that has been conceived and designed to accomplish these goals, while motivating and equipping this next generation of engineers to rise to future challenges. The course structure was defined in order to be easy to understand and provide a logical flow along the topics, as it mostly progresses from simple topics to more advanced ones. The developed materials include slides for class room teaching, explanatory documents for student and educators future reference, laboratories, tests, programs and application examples after each chapter. Each module is dedicated to a specific aspect of the MSP430 device, including the description of a range of peripherals. This is the first part of the paper presenting the outline of the course. Particularly, this paper identifies the course need, presents its structure, and the initial subjects covering an introductory overview in logic design and embedded processors and a description of the available software and hardware development tools for the MSP430.info:eu-repo/semantics/publishedVersio

    Computer-controlled autonomous model car: A mechatronics project

    Get PDF
    Mechatronics is a synthesis of mechanical engineering and electronic engineering, and computer engineering, distinct areas that overlap in the design of systems. It represents the interdisciplinary nature of design and development of today\u27s products.;The current research focuses on the design, construction and testing of a computer controlled autonomous model car which can exhibit intelligent behavior such as timed course execution, obstacle detection, and response to sensor inputs. The car is intended as a mechatronics design project that will be integrated into an existing one-semester mechanical engineering undergraduate instrumentation course.;The car was designed around a microprocessor board (Tern Analog Drive) controlled by a 16-bit microcontroller (Tern V104) and equipped with several sensor channels. Two stepper motors were used to propel and guide the car. Photocells were used to detect the path. The control program was written in Turbo C.;The car was tested on a path of reflective white tape about 2 inches wide. The path consists of a 36-inch straight portion followed by a 17-inch radius of curvature curved portion, and completed by a 6-inch straight section with an obstacle at the end. The autonomous car successfully traversed the path and stopped when it detected the obstacle.;It was concluded that a successful mechatronic design project could be developed around the construction and testing of an autonomous car

    Design and application of reconfigurable circuits and systems

    No full text
    Open Acces

    NASA Space Engineering Research Center for VLSI System Design

    Get PDF
    This annual report outlines the activities of the past year at the NASA SERC on VLSI Design. Highlights for this year include the following: a significant breakthrough was achieved in utilizing commercial IC foundries for producing flight electronics; the first two flight qualified chips were designed, fabricated, and tested and are now being delivered into NASA flight systems; and a new technology transfer mechanism has been established to transfer VLSI advances into NASA and commercial systems

    Evolution of Microcontroller-based Remote Monitoring System Applications

    Get PDF
    This study reviews the evolution of smart applications of microcontroller-based wireless/wired remote monitoring systems. Rapid developments in science and technology offer the advantages of using integrated embedded chips, microprocessors, and microcontrollers. The use of microcontrollers in industrial processes, such as automobiles, aeronautics, space, robotics, electronics, defense applications, mobile communications, rail transport, and medical applications, is rapidly increasing. This study aims to review the progress of microcomputers in smart remote monitoring and controlling applications for the control and management of different systems using wireless/wired technique

    Pneumatic motion control systems for modular robots

    Get PDF
    This thesis describes a research study in the design, implementation, evaluation and commercialisation of pneumatic motion control systems for modular robots. The research programme was conducted as part of a collaborative study, sponsored by the Science and Engineering Research Council, between Loughborough University and Martonair (UK) Limited. Microprocessor based motion control strategies have been used to produce low cost pneumatic servo-drives which can be used for 'point-to-point' positioning of payloads. Software based realtime control strategies have evolved which accomplish servo-controlled positioning while compensating for drive system non-linearities and time delays. The application of novel compensation techniques has resulted in a significant improvement in both the static and dynamic performance of the drive. A theoretical foundation is presented based on a linearised model of a pneumatic actuator, servo-valve, and load system. The thesis describes the design and evolution of microprocessor based hardware and software for motion control of pneumatic drives. A British Standards based test-facility has allowed control strategies to be evaluated with reference to standard performance criteria. It is demonstrated in this research study that the dynamic and static performance characteristics of a pneumatic motion control system can be dramatically improved by applying appropriate software based realtime control strategies. This makes the application of computer controlled pneumatic servos in manufacturing very attractive with cost performance ratios which match or better alternative drive technologies. The research study has led to commercial products (marketed by Martonair Ltd), in which realtime control algorithms implementing these control strategy designs are executed within a microprocessor based motion controller

    Didactic platform with a DSP to support the teaching of digital signal processing

    Get PDF
    Si ens posem en context d'un estudiant d'enginyeria, descobrirem que una de les majors motivacions de l'aprenentatge són les pràctiques de laboratori. Aquest treball de fi de grau tractarà sobre la recerca i el desenvolupament d'una plataforma didàctica per a l'assignatura de «Processament Digital del Senyal», impartida durant el tercer curs acadèmic del grau d'Enginyeria de Sistemes TIC. Aquesta plataforma que desenvoluparem inclourà un processador de senyals digitals (DSP) i els perifèrics necessaris perquè els estudiants i professors creïn projectes en un entorn de prototipatge ràpid. A més, els annexos proporcionats haurien de complir amb els requisits per a que aquells que estiguin interessats puguin fabricar el nostre disseny amb poques dificultats.If we put ourselves in the context of an engineering student, we will discover that one of the greatest motivations for learning are laboratory works. This final degree thesis will be about the research and development of a didactic platform for the subject of Digital Signal Processing, taught during the third academical year of the ICT Systems Engineering degree. This platform we are going to develop will encase a digital signal processor (DSP) and the required peripherals for the students and teachers to quickly create projects in a fast prototyping environment. Additionally, the provided annexes should meet with the requirements for those who are interested to manufacture our design with little trouble
    • …
    corecore