553 research outputs found

    Meta-F*: Proof Automation with SMT, Tactics, and Metaprograms

    Full text link
    We introduce Meta-F*, a tactics and metaprogramming framework for the F* program verifier. The main novelty of Meta-F* is allowing the use of tactics and metaprogramming to discharge assertions not solvable by SMT, or to just simplify them into well-behaved SMT fragments. Plus, Meta-F* can be used to generate verified code automatically. Meta-F* is implemented as an F* effect, which, given the powerful effect system of F*, heavily increases code reuse and even enables the lightweight verification of metaprograms. Metaprograms can be either interpreted, or compiled to efficient native code that can be dynamically loaded into the F* type-checker and can interoperate with interpreted code. Evaluation on realistic case studies shows that Meta-F* provides substantial gains in proof development, efficiency, and robustness.Comment: Full version of ESOP'19 pape

    Control Flow Analysis for SF Combinator Calculus

    Full text link
    Programs that transform other programs often require access to the internal structure of the program to be transformed. This is at odds with the usual extensional view of functional programming, as embodied by the lambda calculus and SK combinator calculus. The recently-developed SF combinator calculus offers an alternative, intensional model of computation that may serve as a foundation for developing principled languages in which to express intensional computation, including program transformation. Until now there have been no static analyses for reasoning about or verifying programs written in SF-calculus. We take the first step towards remedying this by developing a formulation of the popular control flow analysis 0CFA for SK-calculus and extending it to support SF-calculus. We prove its correctness and demonstrate that the analysis is invariant under the usual translation from SK-calculus into SF-calculus.Comment: In Proceedings VPT 2015, arXiv:1512.0221

    P4-compatible High-level Synthesis of Low Latency 100 Gb/s Streaming Packet Parsers in FPGAs

    Full text link
    Packet parsing is a key step in SDN-aware devices. Packet parsers in SDN networks need to be both reconfigurable and fast, to support the evolving network protocols and the increasing multi-gigabit data rates. The combination of packet processing languages with FPGAs seems to be the perfect match for these requirements. In this work, we develop an open-source FPGA-based configurable architecture for arbitrary packet parsing to be used in SDN networks. We generate low latency and high-speed streaming packet parsers directly from a packet processing program. Our architecture is pipelined and entirely modeled using templated C++ classes. The pipeline layout is derived from a parser graph that corresponds a P4 code after a series of graph transformation rounds. The RTL code is generated from the C++ description using Xilinx Vivado HLS and synthesized with Xilinx Vivado. Our architecture achieves 100 Gb/s data rate in a Xilinx Virtex-7 FPGA while reducing the latency by 45% and the LUT usage by 40% compared to the state-of-the-art.Comment: Accepted for publication at the 26th ACM/SIGDA International Symposium on Field-Programmable Gate Arrays February 25 - 27, 2018 Monterey Marriott Hotel, Monterey, California, 7 pages, 7 figures, 1 tabl

    A Context-Oriented Extension of F#

    Get PDF
    Context-Oriented programming languages provide us with primitive constructs to adapt program behaviour depending on the evolution of their operational environment, namely the context. In previous work we proposed ML_CoDa, a context-oriented language with two-components: a declarative constituent for programming the context and a functional one for computing. This paper describes the implementation of ML_CoDa as an extension of F#.Comment: In Proceedings FOCLASA 2015, arXiv:1512.0694

    Meta-Programming and Policy-Based Design as a Technique of Architecting Modular and Efficient DSP Algorithm Implementations

    Get PDF
    Meta-programming paradigm and policy-based design are less known programming techniques in Digital Signal Processing (DSP) community, used to coding in pure C or assembly language. Major software components, like C++ STL, have proven usefulness of such paradigms in providing top performance of highly optimised native code, along with abstraction and modularity necessary in complex software projects. This paper describes composition of DSP code using these techniques, bringing as an example implementation of Feedback Delay Network (FDN) artificial reverberation algorithm. The proposed approach was proven to be practical, especially in case of prototyping computationally intense algorithms. To provide further performance insight, we discuss the techniques in context of other optimisation methods, like Single Instruction Multiple Data (SIMD) instruction sets usage and exploitation of superscalar architecture capabilities
    • …
    corecore