937 research outputs found

    Decentralized Observer Design for Virtual Decomposition Control

    Get PDF
    In this paper, we incorporate velocity observer design into the virtual decomposition control (VDC) strategy of an nn-DoF open chain robotic manipulator. Descending from the VDC strategy, the proposed design is based on decomposing the nn-DoF manipulator into subsystems, i.e., rigid links and joints, for which the controller-observer implementation can be done locally. Similar to VDC, the combined controller-observer design is passivity-based, and we show that it achieves semiglobal asymptotic convergence of the tracking error. The convergence analysis is carried out using non-negative accompanying functions based on the observer and controller error dynamics. The proposed design is demonstrated in a simulation study of a 2-DoF open chain robotic manipulator in the vertical plane.Comment: 16 pages, 4 figure

    OPEN ARCHITECTURE PLATFORMS FOR THE CONTROL OF ROBOTIC SYSTEMS AND A PROPOSED REFERENCE ARCHITECTURE MODEL

    Get PDF
    This paper presents advantages of using open architecture for the real-time control of robot manipulators, parallel kinematics machine tools and other multi-axis machining systems. In order to increase their competitiveness, companies need to follow the global economy requirements. The constant incorporation of new technologies into existing controllers and reduction in the development time and costs are the main objectives. An open architecture control (OAC) concept appears as a solution to deal with these requirements. This article explains the rationale for the development of OAC systems, presents the major international activities which propose various approaches to OACs and a series of controllers that have been developed using this design philosophy at the Lola Institute

    On adaptive robot systems for manufacturing applications

    Get PDF
    System adaptability is very important to current manufacturing practices due to frequent changes in the customer needs. Two basic concepts that can be employed to achieve system adaptability are flexible systems and modular systems. Flexible systems are fixed integral systems with some adjustable components. Adjustable components have limited ranges of parameter changes that can be made, thus restricting the adaptability of systems. Modular systems are composed of a set of pre-existing modules. Usually, the parameters of modules in modular systems are fixed, and thus increased system adaptability is realized only by increasing the number of modules. Increasing the number of modules could result in higher costs, poor positioning accuracy, and low system stiffness in the context of manufacturing applications. In this thesis, a new idea was formulated: a combination of the flexible system and modular system concepts. Systems developed based on this new idea are called adaptive systems. This thesis is focused on adaptive robot systems. An adaptive robot system is such that adaptive components or adjustable parameters are introduced upon the modular architecture of a robot system. This implies that there are two levels to achieve system adaptability: the level where a set of modules is appropriately assembled and the level where adjustable components or parameters are specified. Four main contributions were developed in this thesis study. First, a General Architecture of Modular Robots (GAMR) was developed. The starting point was to define the architecture of adaptive robot systems to have as many configuration variations as possible. A novel application of the Axiomatic Design Theory (ADT) was applied to GAMR development. It was found that GAMR was the one with the most coverage, and with a judicious definition of adjustable parameters. Second, a system called Automatic Kinematic and Dynamic Analysis (AKDA) was developed. This system was a foundation for synthesis of adaptive robot configurations. In comparison with the existing approach, the proposed approach has achieved systemization, generality, flexibility, and completeness. Third, this thesis research has developed a finding that in modular system design, simultaneous consideration of both kinematic and dynamic behaviors is a necessary step, owing to a strong coupling between design variables and system behaviors. Based on this finding, a method for simultaneous consideration of type synthesis, number synthesis, and dimension synthesis was developed. Fourth, an adaptive modular Parallel Kinematic Machine (PKM) was developed to demonstrate the benefits of adaptive robot systems in parallel kinematic machines, which have found many applications in machine tool industries. In this architecture, actuators and limbs were modularized, while the platforms were adjustable in such a way that both the joint positions and orientations on the platforms can be changed

    Human-Mechanical system interaction in Virtual Reality

    Get PDF
    The present work aims to show the great potential of Virtual Reality (VR) technologies in the field of Human-Robot Interaction (HRI). Indeed, it is foreseeable that in not too distant future cooperating robots will be increasingly present in human environments. Many authors actually believe that after the current information revolution, we will witness the so-called "robotics revolution", with the spread of increasingly intelligent and autonomous robots capable of moving into our own environments. Since these machines must be able to interact with human beings in a safe way, new design tools for the study of Human-Robot Interaction (HRI) are needed. The author believes that VR is an ideal design tool for the study of the interaction between humans and automatic machines, since it allows the designers to interact in real-time with virtual robotic systems and to evaluate different control algorithms, without the need of physical prototypes. This also shields the user from any risk related to the physical experimentation. However, VR technologies have also a more immediate application in the field of HRI, such as the study of usability of interfaces for real-time controlled robots. In fact, these robots, such as robots for microsurgery or even "teleoperated" robots working in a hostile environments, are already quite common. VR allows the designers to evaluate the usability of such interfaces by relating their physical input with a virtual output. In particular, the author has developed a new software application aimed at simulating automatic robots and, more generally, mechanical systems in a virtual environment. The user can interact with one or more virtual manipulators and also control them in real-time by means of several input devices. Finally, an innovative approach to the modeling and control of a humanoid robot with high degree of redundancy is discussed. VR implementation of a virtual humanoid is useful for the study of both humanoid robots and human beings

    Self-motion control of kinematically redundant robot manipulators

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2012Includes bibliographical references (leaves: 88-92)Text in English; Abstract: Turkish and Englishxvi,92 leavesRedundancy in general provides space for optimization in robotics. Redundancy can be defined as sensor/actuator redundancy or kinematic redundancy. The redundancy considered in this thesis is the kinematic redundancy where the total degrees-of-freedom of the robot is more than the total degrees-of-freedom required for the task to be executed. This provides infinite number of solutions to perform the same task, thus, various subtasks can be carried out during the main-task execution. This work utilizes the property of self-motion for kinematically redundant robot manipulators by designing the general subtask controller that controls the joint motion in the null-space of the Jacobian matrix. The general subtask controller is implemented for various subtasks in this thesis. Minimizing the total joint motion, singularity avoidance, posture optimization for static impact force objectives, which include maximizing/minimizing the static impact force magnitude, and static and moving obstacle (point to point) collision avoidance are the subtasks considered in this thesis. New control architecture is developed to accomplish both the main-task and the previously mentioned subtasks. In this architecture, objective function for each subtask is formed. Then, the gradient of the objective function is used in the subtask controller to execute subtask objective while tracking a given end-effector trajectory. The tracking of the end-effector is called main-task. The SCHUNK LWA4-Arm robot arm with seven degrees-of-freedom is developed first in SolidWorks® as a computer-aided-design (CAD) model. Then, the CAD model is converted to MATLAB® Simulink model using SimMechanics CAD translator to be used in the simulation tests of the controller. Kinematics and dynamics equations of the robot are derived to be used in the controllers. Simulation test results are presented for the kinematically redundant robot manipulator operating in 3D space carrying out the main-task and the selected subtasks for this study. The simulation test results indicate that the developed controller’s performance is successful for all the main-task and subtask objectives
    • …
    corecore