8 research outputs found

    Functional and structural leaf plasticity determine photosynthetic performances during drought stress and recovery in two platanus orientalis populations from contrasting habitats.

    Get PDF
    In the context of climatic change, more severe and long-lasting droughts will modify the fitness of plants, with potentially worse consequences on the relict trees. We have investigated the leaf phenotypic (anatomical, physiological and biochemical) plasticity in well-watered, drought- stressed and re-watered plants of two populations of Platanus orientalis, an endangered species in the west of the Mediterranean area. The two populations originated in contrasting climate (drier and warmer, Italy (IT) population; more humid and colder, Bulgaria (BG) population). The IT control plants had thicker leaves, enabling them to maintain higher leaf water content in the dry environment, and more spongy parenchyma, which could improve water conductivity of these plants and may result in easier CO2 diffusion than in BG plants. Control BG plants were also characterized by higher photorespiration and leaf antioxidants compared to IT plants. BG plants responded to drought with greater leaf thickness shrinkage. Drought also caused substantial reduction in photosynthetic parameters of both IT and BG plants. After re-watering, photosynthesis did not fully recover in either of the two populations. However, IT leaves became thicker, while photorespiration in BG plants further increased, perhaps indicating sustained activation of defensive mechanisms. Overall, our hypothesis, that plants with a fragmented habitat (i.e., the IT population) lose phenotypic plasticity but acquire traits allowing better resistance to the climate where they became adapted, remains confirmed

    Interval type-2 Atanassov-intuitionistic fuzzy logic for uncertainty modelling

    Get PDF
    This thesis investigates a new paradigm for uncertainty modelling by employing a new class of type-2 fuzzy logic system that utilises fuzzy sets with membership and non-membership functions that are intervals. Fuzzy logic systems, employing type-1 fuzzy sets, that mark a shift from computing with numbers towards computing with words have made remarkable impacts in the field of artificial intelligence. Fuzzy logic systems of type-2, a generalisation of type-1 fuzzy logic systems that utilise type-2 fuzzy sets, have created tremendous advances in uncertainty modelling. The key feature of the type-2 fuzzy logic systems, with particular reference to interval type-2 fuzzy logic systems, is that the membership functions of interval type-2 fuzzy sets are themselves fuzzy. These give interval type-2 fuzzy logic systems an advantage over their type-1 counterparts which have precise membership functions. Whilst the interval type-2 fuzzy logic systems are effective in modelling uncertainty, they are not able to adequately handle an indeterminate/neutral characteristic of a set, because interval type-2 fuzzy sets are only specified by membership functions with an implicit assertion that the non-membership functions are complements of the membership functions (lower or upper). In a real life scenario, it is not necessarily the case that the non-membership function of a set is complementary to the membership function. There may be some degree of hesitation arising from ignorance or a complete lack of interest concerning a particular phenomenon. Atanassov intuitionistic fuzzy set, another generalisation of the classical fuzzy set, captures this thought process by simultaneously defining a fuzzy set with membership and non-membership functions such that the sum of both membership and non-membership functions is less than or equal to 1. In this thesis, the advantages of both worlds (interval type-2 fuzzy set and Atanassov intuitionistic fuzzy set) are explored and a new and enhanced class of interval type-2 fuzzy set namely, interval type-2 Atanassov intuitionistic fuzzy set, that enables hesitation, is introduced. The corresponding fuzzy logic system namely, interval type-2 Atanassov intuitionistic fuzzy logic system is rigorously and systematically formulated. In order to assess this thesis investigates a new paradigm for uncertainty modelling by employing a new class of type-2 fuzzy logic system that utilises fuzzy sets with membership and non-membership functions that are intervals. Fuzzy logic systems, employing type-1 fuzzy sets, that mark shift from computing with numbers towards computing with words have made remarkable impacts in the field of artificial intelligence. Fuzzy logic systems of type-2, a generalisation of type-1 fuzzy logic systems that utilise type-2 fuzzy sets, have created tremendous advances in uncertainty modelling. The key feature of the type-2 fuzzy logic systems, with particular reference to interval type-2 fuzzy logic systems, is that the membership functions of interval type-2 fuzzy sets are themselves fuzzy. These give interval type-2 fuzzy logic systems an advantage over their type-1 counterparts which have precise membership functions. Whilst the interval type-2 fuzzy logic systems are effective in modelling uncertainty, they are not able to adequately handle an indeterminate/neutral characteristic of a set, because interval type-2 fuzzy sets are only specified by membership functions with an implicit assertion that the non-membership functions are complements of the membership functions (lower or upper). In a real life scenario, it is not necessarily the case that the non-membership function of a set is complementary to the membership function. There may be some degree of hesitation arising from ignorance or a complete lack of interest concerning a particular phenomenon. Atanassov intuitionistic fuzzy set, another generalisation of the classical fuzzy set, captures this thought process by simultaneously defining a fuzzy set with membership and non-membership functions such that the sum of both membership and non-membership functions is less than or equal to 1. In this thesis, the advantages of both worlds (interval type-2 fuzzy set and Atanassov intuitionistic fuzzy set) are explored and a new and enhanced class of interval type-2 fuzz set namely, interval type-2 Atanassov intuitionistic fuzzy set, that enables hesitation, is introduced. The corresponding fuzzy logic system namely, interval type-2 Atanassov intuitionistic fuzzy logic system is rigorously and systematically formulated. In order to assess the viability and efficacy of the developed framework, the possibilities of the optimisation of the parameters of this class of fuzzy systems are rigorously examined. First, the parameters of the developed model are optimised using one of the most popular fuzzy logic optimisation algorithms such as gradient descent (first-order derivative) algorithm and evaluated on publicly available benchmark datasets from diverse domains and characteristics. It is shown that the new interval type-2 Atanassov intuitionistic fuzzy logic system is able to handle uncertainty well through the minimisation of the error of the system compared with other approaches on the same problem instances and performance criteria. Secondly, the parameters of the proposed framework are optimised using a decoupledextended Kalman filter (second-order derivative) algorithm in order to address the shortcomings of the first-order gradient descent method. It is shown statistically that the performance of this new framework with fuzzy membership and non-membership functions is significantly better than the classical interval type-2 fuzzy logic systems which have only the fuzzy membership functions, and its type-1 counterpart which are specified by single membership and non-membership functions. The model is also assessed using a hybrid learning of decoupled extended Kalman filter and gradient descent methods. The proposed framework with hybrid learning algorithm is evaluated by comparing it with existing approaches reported in the literature on the same problem instances and performance metrics. The simulation results have demonstrated the potential benefits of using the proposed framework in uncertainty modelling. In the overall, the fusion of these two concepts (interval type-2 fuzzy logic system and Atanassov intuitionistic fuzzy logic system) provides a synergistic capability in dealing with imprecise and vague information

    Interval type-2 Atanassov-intuitionistic fuzzy logic for uncertainty modelling

    Get PDF
    This thesis investigates a new paradigm for uncertainty modelling by employing a new class of type-2 fuzzy logic system that utilises fuzzy sets with membership and non-membership functions that are intervals. Fuzzy logic systems, employing type-1 fuzzy sets, that mark a shift from computing with numbers towards computing with words have made remarkable impacts in the field of artificial intelligence. Fuzzy logic systems of type-2, a generalisation of type-1 fuzzy logic systems that utilise type-2 fuzzy sets, have created tremendous advances in uncertainty modelling. The key feature of the type-2 fuzzy logic systems, with particular reference to interval type-2 fuzzy logic systems, is that the membership functions of interval type-2 fuzzy sets are themselves fuzzy. These give interval type-2 fuzzy logic systems an advantage over their type-1 counterparts which have precise membership functions. Whilst the interval type-2 fuzzy logic systems are effective in modelling uncertainty, they are not able to adequately handle an indeterminate/neutral characteristic of a set, because interval type-2 fuzzy sets are only specified by membership functions with an implicit assertion that the non-membership functions are complements of the membership functions (lower or upper). In a real life scenario, it is not necessarily the case that the non-membership function of a set is complementary to the membership function. There may be some degree of hesitation arising from ignorance or a complete lack of interest concerning a particular phenomenon. Atanassov intuitionistic fuzzy set, another generalisation of the classical fuzzy set, captures this thought process by simultaneously defining a fuzzy set with membership and non-membership functions such that the sum of both membership and non-membership functions is less than or equal to 1. In this thesis, the advantages of both worlds (interval type-2 fuzzy set and Atanassov intuitionistic fuzzy set) are explored and a new and enhanced class of interval type-2 fuzzy set namely, interval type-2 Atanassov intuitionistic fuzzy set, that enables hesitation, is introduced. The corresponding fuzzy logic system namely, interval type-2 Atanassov intuitionistic fuzzy logic system is rigorously and systematically formulated. In order to assess this thesis investigates a new paradigm for uncertainty modelling by employing a new class of type-2 fuzzy logic system that utilises fuzzy sets with membership and non-membership functions that are intervals. Fuzzy logic systems, employing type-1 fuzzy sets, that mark shift from computing with numbers towards computing with words have made remarkable impacts in the field of artificial intelligence. Fuzzy logic systems of type-2, a generalisation of type-1 fuzzy logic systems that utilise type-2 fuzzy sets, have created tremendous advances in uncertainty modelling. The key feature of the type-2 fuzzy logic systems, with particular reference to interval type-2 fuzzy logic systems, is that the membership functions of interval type-2 fuzzy sets are themselves fuzzy. These give interval type-2 fuzzy logic systems an advantage over their type-1 counterparts which have precise membership functions. Whilst the interval type-2 fuzzy logic systems are effective in modelling uncertainty, they are not able to adequately handle an indeterminate/neutral characteristic of a set, because interval type-2 fuzzy sets are only specified by membership functions with an implicit assertion that the non-membership functions are complements of the membership functions (lower or upper). In a real life scenario, it is not necessarily the case that the non-membership function of a set is complementary to the membership function. There may be some degree of hesitation arising from ignorance or a complete lack of interest concerning a particular phenomenon. Atanassov intuitionistic fuzzy set, another generalisation of the classical fuzzy set, captures this thought process by simultaneously defining a fuzzy set with membership and non-membership functions such that the sum of both membership and non-membership functions is less than or equal to 1. In this thesis, the advantages of both worlds (interval type-2 fuzzy set and Atanassov intuitionistic fuzzy set) are explored and a new and enhanced class of interval type-2 fuzz set namely, interval type-2 Atanassov intuitionistic fuzzy set, that enables hesitation, is introduced. The corresponding fuzzy logic system namely, interval type-2 Atanassov intuitionistic fuzzy logic system is rigorously and systematically formulated. In order to assess the viability and efficacy of the developed framework, the possibilities of the optimisation of the parameters of this class of fuzzy systems are rigorously examined. First, the parameters of the developed model are optimised using one of the most popular fuzzy logic optimisation algorithms such as gradient descent (first-order derivative) algorithm and evaluated on publicly available benchmark datasets from diverse domains and characteristics. It is shown that the new interval type-2 Atanassov intuitionistic fuzzy logic system is able to handle uncertainty well through the minimisation of the error of the system compared with other approaches on the same problem instances and performance criteria. Secondly, the parameters of the proposed framework are optimised using a decoupledextended Kalman filter (second-order derivative) algorithm in order to address the shortcomings of the first-order gradient descent method. It is shown statistically that the performance of this new framework with fuzzy membership and non-membership functions is significantly better than the classical interval type-2 fuzzy logic systems which have only the fuzzy membership functions, and its type-1 counterpart which are specified by single membership and non-membership functions. The model is also assessed using a hybrid learning of decoupled extended Kalman filter and gradient descent methods. The proposed framework with hybrid learning algorithm is evaluated by comparing it with existing approaches reported in the literature on the same problem instances and performance metrics. The simulation results have demonstrated the potential benefits of using the proposed framework in uncertainty modelling. In the overall, the fusion of these two concepts (interval type-2 fuzzy logic system and Atanassov intuitionistic fuzzy logic system) provides a synergistic capability in dealing with imprecise and vague information

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    Symmetric and Asymmetric Data in Solution Models

    Get PDF
    This book is a Printed Edition of the Special Issue that covers research on symmetric and asymmetric data that occur in real-life problems. We invited authors to submit their theoretical or experimental research to present engineering and economic problem solution models that deal with symmetry or asymmetry of different data types. The Special Issue gained interest in the research community and received many submissions. After rigorous scientific evaluation by editors and reviewers, seventeen papers were accepted and published. The authors proposed different solution models, mainly covering uncertain data in multicriteria decision-making (MCDM) problems as complex tools to balance the symmetry between goals, risks, and constraints to cope with the complicated problems in engineering or management. Therefore, we invite researchers interested in the topics to read the papers provided in the book

    Collected Papers (on Physics, Artificial Intelligence, Health Issues, Decision Making, Economics, Statistics), Volume XI

    Get PDF
    This eleventh volume of Collected Papers includes 90 papers comprising 988 pages on Physics, Artificial Intelligence, Health Issues, Decision Making, Economics, Statistics, written between 2001-2022 by the author alone or in collaboration with the following 84 co-authors (alphabetically ordered) from 19 countries: Abhijit Saha, Abu Sufian, Jack Allen, Shahbaz Ali, Ali Safaa Sadiq, Aliya Fahmi, Atiqa Fakhar, Atiqa Firdous, Sukanto Bhattacharya, Robert N. Boyd, Victor Chang, Victor Christianto, V. Christy, Dao The Son, Debjit Dutta, Azeddine Elhassouny, Fazal Ghani, Fazli Amin, Anirudha Ghosha, Nasruddin Hassan, Hoang Viet Long, Jhulaneswar Baidya, Jin Kim, Jun Ye, Darjan Karabašević, Vasilios N. Katsikis, Ieva Meidutė-Kavaliauskienė, F. Kaymarm, Nour Eldeen M. Khalifa, Madad Khan, Qaisar Khan, M. Khoshnevisan, Kifayat Ullah,, Volodymyr Krasnoholovets, Mukesh Kumar, Le Hoang Son, Luong Thi Hong Lan, Tahir Mahmood, Mahmoud Ismail, Mohamed Abdel-Basset, Siti Nurul Fitriah Mohamad, Mohamed Loey, Mai Mohamed, K. Mohana, Kalyan Mondal, Muhammad Gulfam, Muhammad Khalid Mahmood, Muhammad Jamil, Muhammad Yaqub Khan, Muhammad Riaz, Nguyen Dinh Hoa, Cu Nguyen Giap, Nguyen Tho Thong, Peide Liu, Pham Huy Thong, Gabrijela Popović‬‬‬‬‬‬‬‬‬‬, Surapati Pramanik, Dmitri Rabounski, Roslan Hasni, Rumi Roy, Tapan Kumar Roy, Said Broumi, Saleem Abdullah, Muzafer Saračević, Ganeshsree Selvachandran, Shariful Alam, Shyamal Dalapati, Housila P. Singh, R. Singh, Rajesh Singh, Predrag S. Stanimirović, Kasan Susilo, Dragiša Stanujkić, Alexandra Şandru, Ovidiu Ilie Şandru, Zenonas Turskis, Yunita Umniyati, Alptekin Ulutaș, Maikel Yelandi Leyva Vázquez, Binyamin Yusoff, Edmundas Kazimieras Zavadskas, Zhao Loon Wang.‬‬‬

    Advanced Modeling, Control, and Optimization Methods in Power Hybrid Systems - 2021

    Get PDF
    The climate changes that are becoming visible today are a challenge for the global research community. In this context, renewable energy sources, fuel cell systems and other energy generating sources must be optimally combined and connected to the grid system using advanced energy transaction methods. As this reprint presents the latest solutions in the implementation of fuel cell and renewable energy in mobile and stationary applications such as hybrid and microgrid power systems based on the Energy Internet, blockchain technology and smart contracts, we hope that they will be of interest to readers working in the related fields mentioned above
    corecore