37 research outputs found

    An Experimental Scrutiny of Visual Design Modelling: VCL up against UML+OCL

    Get PDF
    The graphical nature of prominent modelling notations, such as the standards UML and SysML, enables them to tap into the cognitive benefits of diagrams. However, these notations hardly exploit the cognitive potential of diagrams and are only partially graphical with invariants and operations being expressed textually. The Visual Contract Language (VCL) aims at improving visual modelling; it tries to (a) maximise diagrammatic cognitive effectiveness, (b) increase visual expressivity, and (c) level of rigour and formality. It is an alternative to UML that does largely pictorially what is traditionally done textually. The paper presents the results of a controlled experiment carried out four times in different academic settings and involving 43 participants, which compares VCL against UML and OCL and whose goal is to provide insight on benefits and limitations of visual modelling. The paper's hypotheses are evaluated using a crossover design with the following tasks: (i) modelling of state space, invariants and operations, (ii) comprehension of modelled problem, (iii) detection of model defects and (iv) comprehension of a given model. Although visual approaches have been used and advocated for decades, this is the first empirical investigation looking into the effects of graphical expression of invariants and operations on modelling and model usage tasks. Results suggest VCL benefits in defect detection, model comprehension, and modelling of operations, providing some empirical evidence on the benefits of graphical software design

    Using VCL as an Aspect-Oriented Approach to Requirements Modelling

    Get PDF
    Software systems are becoming larger and more complex. By tackling the modularisation of crosscutting concerns, aspect-orientation draws attention to modularity as a means to address the problems of scalability, complexity and evolution in software systems development. Aspect-oriented modelling (AOM) applies aspect-orientation to the construction of models. Most existing AOM approaches are designed without a formal semantics, and use multi-view partial descriptions of behaviour. This paper presents an AOM approach based on the Visual Contract Language (VCL): a visual language for abstract and precise modelling, designed with a formal semantics, and comprising a novel approach to visual behavioural modelling based on design by contract where behavioural descriptions are total. By applying VCL to a large case study of a car-crash crisis management system, the paper demonstrates how modularity of VCL's constructs, at different levels of granularity, help to tackle complexity. In particular, it shows how VCL's package construct and its associated composition mechanisms are key in supporting separation of concerns, coarse-grained problem decomposition and aspect-orientation. The case study's modelling solution has a clear and well-defined modular structure; the backbone of this structure is a collection of packages encapsulating local solutions to concerns

    Assessing composition in modeling approaches

    Full text link
    Modeling approaches are based on various paradigms, e.g., aspect-oriented, feature-oriented, object-oriented, and logic-based. Modeling approaches may cover requirements models to low-level design models, are developed for various purposes, use various means of composition, and thus are difficult to compare. However, such comparisons are critical to help practitioners know under which conditions approaches are most applicable, and how they might be successfully generalized and combined to achieve end-to-end methods. This paper reports on work done at the 2nd International Comparing Modeling Approaches (CMA) workshop towards the goal of identifying potential comprehensive modeling methodologies with a particular emphasis on composition: (i) an improved set of comparison criteria; (ii) 19 assessments of modeling approaches based on the comparison criteria and a common, focused case study

    1997 Research Reports: NASA/ASEE Summer Faculty Fellowship Program

    Get PDF
    This document is a collection of technical reports on research conducted by the participants in the 1997 NASA/ASEE Summer Faculty Fellowship Program at the Kennedy Space Center (KSC). This was the 13th year that a NASA/ASEE program has been conducted at KSC. The 1997 program was administered by the University of Central Florida in cooperation with KSC. The program was operated under the auspices of the American Society for Engineering Education (ASEE) with sponsorship and funding from the Education Division, NASA Headquarters, Washington, D.C., and KSC. The KSC Program was one of nine such Aeronautics and Space Research Programs funded by NASA in 1997. The NASA/ASEE Program is intended to be a two-year program to allow in-depth research by the university faculty member. The editors of this document were responsible for selecting appropriately qualified faculty to address some of the many problems of current interest to NASA/KSC

    ALT-C 2012 Abstracts

    Get PDF
    This is a PDF of the abstracts for all the sessions at the 2012 ALT conference. It is designed to be used alongside the online version of the conference programme. It was made public on 7 September 2012

    NASA/ASEE Summer Faculty Fellowship Program

    Get PDF
    This document is a collection of technical reports on research conducted by the participants in the 1996 NASA/ASEE Summer Faculty Fellowship Program at the Kennedy Space Center (KSC). This was the twelfth year that a NASA/ASEE program has been conducted at KSC. The 1996 program was administered by the University of Central Florida in cooperation with KSC. The program was operated under the auspices of the American Society for Engineering Education (ASEE) with sponsorship and funding from the Office of Educational Affairs, NASA Headquarters, Washington, DC and KSC. The KSC Program was one of nine such Aeronautics and Space Research Program funded by NASA in 1996. The NASA/ASEE Program is intended to be a two-year program to allow in-depth research by the University faculty member. The editors of this document were responsible for selecting appropriately qualified faculty to address some of the many problems of current interest to NASA/KSC

    The Mechanical Properties of Carbon Fibre With Glass Fibre Hybrid Reinforced Plastics

    Get PDF
    Merged with duplicate record 10026.1/2475 on 15.03.2017 by CS (TIS)Fibre composite hybrid materials are generally plastics reinforced with two different fibre species. The combination of these three materials (in this thesis they are carbon fibres, glass fibres and polyester resin) allows a balance to be achieved between the properties of the two monofibre composites. Over the fifteen years since the introduction of continuous carbon fibre as a reinforcement, there has been considerable speculation about the "hybrid effect", a synergistic strengthening of reinforced plastics with two fibres when compared with the strength predicted from a weighted average from the component composites. A new equation is presented which predicts the extent of the hybrid effect. Experiments with a variety of carbon-glass hybrids were undertaken to examine the validity of the theory and the effect of the degree of inter-mixing of the fibres. The classification and quantification of the hybrid microstructures was examined with a view to crosscorrelation of the intimacy of mixing and the strength. Mechanical tests were monitored with acoustic emission counting and acoustic emission amplitude distribution equipment. Some specimens were subjected to one thermal cycle to liquid nitrogen temperature prior to testing. Fracture surfaces were examined in the scanning electron microscope. Numerical analysis by finite element methods was attempted. A constant strain triangular element was used initially, but in the later analyses the PAFEC anisotropic isoparametric quadrilateral elements were used. The system was adapted so that a \Ir singularity could be modelled, and post processor software was written to allow nodal averaging of the stresses and the presentation of this data graphically as stress contour maps
    corecore